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and prevention approaches to avoid the ‘technical mortgage’ associated with 
defective software products. In today’s ‘quick-to-market’ world, an emphasis 
on strengthening the engineering in software engineering is refreshing. If you’re 
a software developer, manager, student, or user, this book will challenge your 
perspective on software quality. Many thanks!”

—Joe Schofield, Sandia National Laboratories;  
Vice President, IFPUG; CQA, CFPS, CSMS,  

LSS BB, SEI-certified instructor
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credible, detailed, relevant metrics and insights into the current capabilities and 
performance of the software engineering profession, I always turn to Capers 
Jones’s work first. In this important new book, he and Olivier Bonsignour make 



the hard-headed, bottom-line, economic case, with facts and data, about why 
software quality is so important. I know I’ll turn to this excellent reference 
again and again.”

—Rex Black, President, RBCS (www.rbcs-us.com), and author of  
seven books on software quality and testing, including  

Managing the Testing Process, Third Edition

“This masterpiece of a book will empower those who invest in software—and 
the businesses and products that depend on it—to do so wisely. It is a ground-
breaking work that rigorously applies principles of finance, economics, man-
agement, quality, and productivity to scrutinize holistically the value 
propositions and myths underlying the vast sums invested in software. A must-
read if you want to get your money’s worth from your software investments.”

—Leon A. Kappelman, Professor of Information Systems,  
College of Business, University of North Texas

“Capers Jones is the foremost leader in the software industry today for soft-
ware metrics. The Economics of Software Quality is a comprehensive, data-rich 
study of challenges of quality software across the many application domains. It 
is an essential read for software quality professionals who wish to better under-
stand the challenges they face and the cost and effectiveness of potential solu-
tions. It is clear that much research and thought has been put into this.”

—Maysa-Maria Peterson Lach, Senior Principal  
Software Engineer, Raytheon Missile Systems

“In no other walk of life do we resist the necessity and validity of precise, rigor-
ous measurement, as software practitioners have so vigorously resisted for more 
than fifty years. Capers Jones took up the challenge of bringing sanity and pre-
dictability to software production more than three decades ago, and now with 
Olivier Bonsignour, he brings forth his latest invaluable expression of confi-
dence in applying standard engineering and economic discipline to what too 
often remains the ‘Wild, Wild West’ of software development.”

—Douglas Brindley, President & CEO,  
Software Productivity Research, LLC
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Foreword

As a major telecommunications company, our business consists of a complex 
mix of products and services. Some are decades old, and some are only emerg-
ing. In just one part of our business, customers now access sophisticated busi-
ness processes via myriad mobile devices operating on multiple platforms, 
technologies, and standards. The mobile access revolution is only one example 
of the continual change we must master. In several of our new markets, some of 
our competitors were not even on the radar ten years ago.

The IT systems that service our customers have been built over decades of 
changing regulatory frameworks, intense competition, and M&A activity; these 
systems provide mission-critical network management, billing, and customer ser
vice infrastructure for our existing and emerging products. We simply don’t have 
the luxury of crafting Greenfield solutions in response to pressing business needs.

Despite the complex nature of IT, our shareholders expect nothing less 
than continuous improvement in service quality with simultaneous cost reduc-
tions. This has been the case in our market for quite some time and a major 
operational focus for my organization. One area on which we have focused in 
addressing this challenge is measuring software development productivity and 
quality. As the CIO, I oversee the company’s internal information technology 
organization and infrastructure, as well as all evolving software applications. 
When you get down to it, the core expertise of our business is encoded in the 
software that automates our mission-critical processes. It is that software 
layer of our IT stack that fundamentally drives our time to market, our risk 
profile, and our cost structure.

We measure software productivity to allocate resources and make informed 
tradeoffs in our investments. We measure software quality at a structural level, 
in addition to the functional level through testing, to make the right trade-offs 
between delivery speed, business risk, and technical debt—the longer-term costs 
of maintaining and enhancing the delivered solutions.

For several years now, we have been successfully measuring the quality of 
our development projects and including these metrics in some of our Service 
Level Agreements. We are now starting to put productivity measurements 
across our portfolio side-by-side with quality measurements to get a truer pic-
ture of where we are trading present delivery agility for future business agility.
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The Economics of Software Quality is a landmark for three reasons. It is 
practical, it is data-driven, and it goes beyond the traditional treatments of 
quality to demonstrate how to manage structural quality—an important ele-
ment of software quality for our business. Just as we invest in our enterprise 
architecture to actively manage the evolution of our core application software, 
we are putting a strong focus on the analysis and measurement of these applica-
tions at the structural level. These measures enable my organization to take a 
proactive stance to building a better future for our business and for me to 
closely manage the economic fundamentals in meeting and exceeding share-
holder expectations.

As we look forward to an exciting period of rapid growth in fixed-line, 
mobile, data, and on-demand products and services, I can assure you that this is 
one book my management team and I will keep close at hand.

—Thaddeus Arroyo
Chief Information Officer, AT&T Services, Inc.

F. Thaddeus Arroyo, Chief Information Officer, is responsible for AT&T’s 
information technology. He was appointed to his current position in January 
2007, following the close of the merger between AT&T, BellSouth, and Cingu-
lar. In his role, he is responsible for directing the company’s internal informa-
tion technology organization and infrastructure, including Internet and intranet 
capabilities, developing applications systems across the consumer and mobility 
markets, enterprise business segments, and AT&T’s corporate systems. He also 
oversees AT&T’s enterprise data centers.
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Preface

This book is aimed at software managers, executives, and quality assurance 
personnel who are involved in planning, estimating, executing, and maintaining 
software. Managers and stakeholders need to understand the economics of soft-
ware quality when planning and developing new applications and enhancing or 
maintaining existing ones.

The goal of this book is to quantify the factors that influence software qual-
ity and provide readers with enough information for them to predict and meas-
ure quality levels of their projects and applications.

To serve this goal, we consolidate an expansive body of software quality 
data—data on software structural quality, software assurance processes and 
techniques, and the marginal costs and benefits of improving software quality. 
The book provides quantitative data on how high and low quality affect soft-
ware project schedules, staffing, development costs, and maintenance costs. 
This information should enable software managers to set and track progress 
toward quality targets and to make the right trade-offs between speed to mar-
ket and business risk.

We quantify the positive economic value of software quality and the high 
costs of poor software quality using software quality data from large 
organizations in the private and public sectors. This is not a “how to do it” 
book—there are many good how-to books on processes and techniques for test-
ing, inspections, static analysis, and other quality topics. We hope to have added 
a substantial amount of software quality data from real-world applications to 
complement those how-to books and enable IT managers to quantify the relative 
efficacy and economic value of these techniques.

In small projects, individual human skills and experience play a major role in 
successful outcomes. Quality is important, but individual skill tends to be the 
dominant driver of high quality.

But as projects grow larger, with development teams from 20 on up to more 
than 1,000 personnel, individual skills tend to regress to the mean. Quality 
becomes progressively more important because, historically, the costs of finding 
and fixing bugs have been the largest known expense for large software appli-
cations. This is true of both new development as well as enhancement and 
maintenance.

Most discussions of software quality focus almost exclusively on functional 
quality. In this book, we expand our treatment beyond functional quality to 
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cover nonfunctional and structural quality. Measuring structural quality 
requires going beyond the quality of individual components to the quality of 
the application as a whole. We show how to clearly define and repeatably meas-
ure nonfunctional and structural quality.

Reliable measurements of all three kinds of quality—structural, nonfunc-
tional, and functional—are essential for a complete treatment of the economics 
of software quality. We use these quality metrics to compare a number of qual-
ity improvement techniques at each stage of the software development life cycle 
and quantify their efficacy using data from real-world applications.

To achieve high-quality levels for large systems, a synergistic set of methods 
is needed. These include defect prevention methods, which can reduce defect 
levels; pretest defect removal methods such as inspections and static analysis; 
and more than 40 kinds of testing.

Several newer kinds of development methods also have beneficial impacts on 
software quality compared to traditional “waterfall” development. These 
include Agile development, Crystal development, Extreme Programming (XP), 
Personal Software Process (PSP), the Rational Unified Process (RUP), the Team 
Software Process (TSP), and several others.

The generally poor measurement practices of the software industry have 
blurred understanding of software quality economics. Many executives and 
even some quality personnel tend to regard software quality as an expense. 
They also tend to regard quality as a topic that lengthens schedules and raises 
development costs.

However, from an analysis of about 13,000 software projects between 1973 
and today, it is gratifying to observe that high quality levels are invariably 
associated with shorter-than-average development schedules and lower-than-
average development costs.

The reason for this is that most projects that run late and exceed their budg-
ets show no overt sign of distress until testing begins. When testing begins, a 
deluge of high-severity defects tends to stretch out testing intervals and cause 
massive bursts of overtime. In general, testing schedules for low-quality, large 
software projects are two to three times longer and more than twice as costly as 
testing for high-quality projects. If defects remain undetected and unremoved 
until testing starts, it is too late to bring a software project back under control. 
It is much more cost-effective to prevent defects or to remove them prior to 
testing.

Another poor measurement practice that has concealed the economic value 
of software quality is the usage of the cost-per-defect metric. It has become an 
urban legend that “it costs 100 times as much to fix a bug after delivery as dur-
ing development.” Unfortunately, the cost-per-defect metric actually penalizes 
quality and achieves its lowest values for the buggiest software. As quality 



xxiiiPreface

improves, cost per defect rises until a level of zero defects is reached, where the 
cost-per-defect metric cannot be used at all.

The real economic value of high quality is only partially related to defect 
repair costs. It is true that high quality leads to fewer defects and therefore to 
lower defect repair costs. But its major economic benefits are due to the fact 
that high quality

•• Reduces the odds of large-system cancellations

•• Reduces the odds of litigation for outsourced projects

•• Shortens development schedules

•• Lowers development costs

•• Lowers maintenance costs

•• Reduces warranty costs

•• Increases customer satisfaction

This book contains seven chapters. The Introduction in Chapter 1 discusses 
the fact that software has become one of the most widely used products in 
human history. As this book is written, a majority of all business activities are 
driven by software. A majority of government operations are controlled by 
software, such as civilian taxes, military and defense systems, and both state 
and local government organizations. Because software is so pervasive, high and 
low quality levels affect every citizen in significant ways.

Chapter 1 defines software quality, considering the topic of quality is ambig-
uous both for software itself and for other manufactured products. There are 
many diverse views of what “quality” actually means. Chapter 1 examines all 
of the common views and concludes that effective definitions for quality need 
to be predictable in advance and measurable when they occur. Because this 
book deals with quantification and economic topics, there is emphasis on qual-
ity factors that can be measured precisely, such as defects and defect removal 
efficiency. In addition to these well-defined metrics, we show how to precisely 
measure software structural quality. Other definitions of quality, such as fitness, 
use, or aesthetic factors, are important but not always relevant to economic 
analysis.

Chapter 2 is about estimating and measuring software quality. It is impor-
tant for executives, clients, stakeholders, venture capitalists, and others with a 
financial interest in software to understand how quality can be predicted 
before projects start and measured during development and after release. 
Because software quality involves requirements, architecture, design, and many 
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other noncode artifacts, the traditional lines of code metric is inadequate. This 
book uses function point metrics and structural quality metrics for quantifying 
quality. The function point metric is independent of code and therefore can 
deal with noncoding defects such as “toxic requirements.” Structural quality 
metrics get to the root causes of application quality and serve as foundational 
measures of software costs and business risks.

Chapters 3 deals with the important topic of defect prevention. The set of 
methods that reduce defect potentials and minimize errors are difficult to study 
because they cannot be studied in isolation, but need numerous cases where a 
specific method was used and similar cases where the method was not used. 
Examples of methods that have demonstrated success in terms of defect preven-
tion include Six Sigma, quality function deployment (QFD), test-driven develop-
ment (TDD), and formal inspections. The kaizen and poka yoke inspections from 
Japan are also defect prevention methods. Some of these, such as inspections, 
happen to be effective as both defect prevention and defect removal methods.

Chapter 4 deals with pretest defect removal methods in use today. The term 
“pretest” refers to quality and defect removal methods that occur prior to the 
start of testing. Among these methods are peer reviews, formal inspections, and 
static analysis. Although the literature on pretest defect removal is sparse com-
pared to the literature on testing, these methods are important and have great 
value. Effective pretest methods such as inspections and static analysis shorten 
test schedules and raise testing efficiency. Twenty-five different kinds of pretest 
defect removal are discussed.

Chapter 5 deals with testing, which is the traditional quality control tech-
nique for software projects. Although there is an extensive literature on testing, 
there is a surprising lack of quantified data on topics such as defect detection 
efficiency (DDE) and defect removal efficiency (DRE). If testing is performed 
without effective defect prevention methods and without pretest defect removal, 
most forms of testing are usually less than 35% efficient in finding bugs and 
quite expensive as well. A synergistic combination of defect prevention, pretest 
removal, and formal well-planned testing can raise test removal efficiency sub-
stantially. The goal of effective quality control is to approach 99% in terms of 
cumulative defect removal efficiency. Forty kinds of testing stages are discussed 
in Chapter 5.

Chapter 6 deals with post-release defect removal, which is an unfortunate 
fact of life for software applications. Cumulative defect removal efficiency in 
the United States is only about 85%, so all software applications are delivered 
with latent defects. As a result, customers will always find bugs, and software 
organizations will always need customer support and maintenance personnel 
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available to repair the bugs. However, state-of-the-art combinations of defect 
prevention, pretest removal, and testing can top 96% in terms of defect removal 
efficiency on average and even achieve 99% in a few cases.

Chapter 7 consolidates all of the authors’ data and shows side-by-side results 
for low-quality, average-quality, and high-quality software projects. Both the 
methods used to achieve high quality and the quantitative results of achieving 
high quality are discussed.

Using structural quality data from 295 applications from 75 organizations 
worldwide, we define and quantify the notion of technical debt—the cost of fix-
ing problems in working software that, if left unfixed, will likely cause severe 
business disruption. We juxtapose this with a framework for quantifying the 
loss of business value due to poor quality. Together with technical debt, this 
business value framework provides a platform for future software economics 
research.
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Chapter 1

Defining Software Quality 
and Economic Value

Introduction

This book deals with two topics that have been ambiguous and difficult to pin 
down for many years: software quality and economic value.

The reason for the ambiguity, as noted in the Preface, is that there are many 
different points of view, and each point of view has a different interpretation of 
the terms. For example, software quality does not mean the same thing to a 
customer as it does to a developer. Economic value has a different meaning to 
vendors than it has to consumers. For vendors, revenue is the key element of 
value, and for consumers, operational factors represent primary value. Both of 
these are discussed later in the book.

By examining a wide spectrum of views and extracting the essential points 
from each view, the authors hope that workable definitions can be established 
that are comparatively unambiguous.

Software quality, as covered in this book, goes well beyond functional qual­
ity (the sort of thing to which customers might react to in addition to usability 
and reliable performance). Quality certainly covers these aspects but extends 
further to nonfunctional quality (how well the software does what it is meant 
to do) and to structural quality (how well it can continue to serve business 
needs as they evolve and change as business conditions do).

Why Is Software Quality Important?

Computer usage in industrial countries starts at or before age 6, and by age 
16 almost 60% of young people in the United States have at least a working 

1
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knowledge of computers and software. Several skilled hackers have been appre­
hended who were only 16 years of age.

The approximate population of the United States in 2010 was about 
309,800,135 based on Census Bureau estimates. Out of the total population 
about 30% use computers daily either for business purposes or for recreational 
purposes or both; that is, about 92,940,040 Americans are daily computer 
users.

About 65% of the U.S. population use embedded software in the form of 
smart phones, digital cameras, digital watches, automobile brakes and engine 
controls, home appliances, and entertainment devices. Many people are not 
aware that embedded software controls such devices, but it does. In other 
words, about 201,370,087 U.S. citizens own and use devices that contain 
embedded software.

Almost 100% of the U.S. population has personal data stored in various 
online databases maintained by the Census Bureau, the Internal Revenue Ser­
vice, state governments, municipal governments, banks, insurance companies, 
credit card companies, and credit scoring companies.

Moving on to business, data from various sources such as Forbes, Manta, 
Business Week, the Department of Commerce Bureau of Labor Statistics, and 
others reports that the United States has about 22,553,779 companies (as of the 
end of 2010). Of these companies about 65% use computers and software for 
business operations, retail sales, accounting, and other purposes—so about 
14,659,956 U.S. companies use computers and software. (Corporate software 
usage ranges from a basic spreadsheet up to entire enterprise resource planning 
[ERP] packages plus hundreds of other applications.)

Based on data from the Manta website, the software deployed in the United 
States is provided by about 77,186 software companies and another 10,000 
U.S. companies that create devices with embedded software. A great deal of 
embedded software and the device companies themselves have moved to China, 
Taiwan, Japan, India, and other offshore countries. An exception to offshore 
migration is the manufacture of embedded software for military equipment and 
weapons systems, which tends to stay in the United States for security reasons.

The U.S. military services and the Department of Defense (DoD) own and 
deploy more software than any other organizations in history. In fact, the DoD 
probably owns and deploys more software than the military organizations of 
all other countries combined. Our entire defense community is now dependent 
on software for command and control, logistics support, and the actual opera­
tion of weapons systems. Our national defense systems are highly computer­
ized, so software quality is a critical component of the U.S. defense strategy.
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Without even knowing it, we are awash in a sea of software that operates 
most of our manufacturing equipment, keeps records on virtually all citizens, 
and operates the majority of our automobiles, home appliances, and 
entertainment devices. Our transportation systems, medical systems, and 
government operations all depend on computers and software and hence also 
depend on high software quality levels.

While software is among the most widely used products in human history, it 
also has one of the highest failure rates of any product in human history due 
primarily to poor quality.

Based on observations among the authors’ clients plus observations during 
expert witness assignments, the cancellation rate for applications in the 10,000 
function point size range is about 31%. The average cost for these cancelled 
projects is about $35,000,000. By contrast, projects in the 10,000 function 
point size range that are successfully completed and have high quality levels 
only cost about $20,000,000.

When projects developed by outsource vendors are cancelled and clients sue 
for breach of contract, the average cost of litigation is about $5,000,000 for the 
plaintiff and $7,000,000 for the defendant. If the defendants lose, then awards 
for damages can top $25,000,000. However because most U.S. courts bar suits 
for consequential damages, the actual losses by the defendants can be much 
larger.

Of the authors’ clients who are involved with outsourcing, about 5% of 
agreements tend to end up in court for breach of contract. The claims by 
the plaintiffs include outright failure, delivery of inoperable software, or deliv­
ery of software with such high defect volumes that usage is harmful rather than 
useful.

As of 2011, the average cost per function point in the United States is about 
$1,000 to build software applications and another $1,000 to maintain and 
support them for five years: $2,000 per function point in total. For projects that 
use effective combinations of defect prevention and defect removal activities 
and achieve high quality levels, average development costs are only about $700 
per function point and maintenance, and support costs drop to about $500 per 
function point: $1,200 per function point in total.

Expressed another way, the software engineering population of the United 
States is currently around 2,400,000 when software engineers and related 
occupations such as systems analysis are considered. On any given day, due 
to  poor quality control, about 1,000,000 of these workers spend the day 
finding and fixing bugs (and, unwittingly, injecting new bugs as part of the 
process).
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So all of these statistics point to the fact that better software quality control 
in the forms of defect prevention and more effective defect removal could free 
up about 720,000 software personnel for more productive work than just bug 
repairs, easily reducing U.S. software development and maintenance costs by 
about 50%.

As we show later in the book, the cost savings that result from higher quality 
are proportional to application size. As software projects grow larger, cost 
savings from high quality levels increase. Table 1.1 illustrates typical software 
development costs for low-, average-, and high-quality software applications.

The technologies and methods associated with these three quality levels are 
discussed and illustrated in later sections of this chapter, as are the reasons that 
large software projects are so risky. Suffice it to say the “high quality” column 
includes effective defect prevention, effective pretest defect removal such as 
inspections and static analysis, and much more effective testing than the other 
columns.

Another major reason that software quality is important is because poor 
quality can and will affect each citizen personally in unpleasant ways. Every time 
there is a billing error, every time taxes are miscalculated, every time credit rat­
ings change for incorrect reasons, poor software quality is part of the problem.

Early in 2010, hundreds of computers were shut down and many businesses 
including hospitals were disrupted when the MacAfee antivirus application mis­
takenly identified part of Microsoft Windows as a virus and stopped it from 
loading.

According to the July 25, 2010, issue of Computerworld, the BP drilling 
platform that exploded and sank had been having frequent and serious com­
puter problems for a month prior to the final disaster. These problems prevented 
significant quantities of data from being analyzed that might have warned oper­
ators in time to shut down the oil pumping operation.

Table 1.1  Software Costs by Size and Quality Level

	 (Burdened cost = $10,000 per month)

Function Points	 Low Quality	 Average Quality	 High Quality

	 10	 $6,875	 $6,250	 $5,938

	 100	 $88,561	 $78,721	 $74,785

	 1,000	 $1,039,889	 $920,256	 $846,636

	 10,000	 $23,925,127	 $23,804,458	 $18,724,012

	 100,000	 $507,767,782	 $433,989,557	 $381,910,810



Introduction 5

If your automobile braking system does not operate correctly, if a home 
appliance fails unexpectedly, or if a hospital makes a medical mistake, there is a 
good chance that poor software quality was part of the problem.

If an airline flight is delayed more than about two hours or if there is a 
widespread power outage that affects an entire geographic region such as New 
England, the odds, again, are good that poor software quality was part of the 
problem.

Because software is such a basic commodity as of 2011, it is useful to start 
by considering how much software ordinary U.S. citizens own and use. 
Table  1.2 shows typical software volumes associated with normal living 
activities.

The data in Table 1.2 comes from a combination of web sources and propri­
etary data provided by clients who build appliances of various kinds.

Not every citizen has all of these appliances and devices, but about half of us 
do. Many of us have even more than what Table 1.2 indicates, such as owning 
several automobiles, several cell phones, and numerous appliances. Software 
quality is important because it is the main operating component of almost all 
complex machines as of 2011.

Another reason that software quality is important is because many of us 
need high-quality software to go about our daily jobs. Table 1.3 shows typical 
software usage patterns for a sample of positions that include knowledge work, 
based on observations and discussions with members of various professions 
and from studies with the companies that provide the software.

Table 1.2  Personal Software Circa 2011

Products	 Function Points	 Lines of Code	 Daily Usage Hours

Personal computer	 1,000,000	 50,000,000	 2.00

Automobile	 350,000	 17,500,000	 2.00

Smart appliances	 100,000	 5,000,000	 1.00

Smart phone	 25,000	 1,250,000	 1.50

Social networks	 25,000	 1,250,000	 1.50

Home entertainment	 10,000	 500,000	 2.00

Electronic book	 5,000	 250,000	 1.00

Digital camera	 2,500	 125,000	 0.50

Digital watch	 1,500	 75,000	 0.50

TOTALS	 1,519,000	 75,950,000	 12.00
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As can be seen from Table 1.3, all knowledge workers in the modern world 
are heavily dependent on computers and software to perform their jobs. There­
fore, these same workers are heavily dependent on high software quality levels. 
Every time there is a computer failure or a software failure, many knowledge 
workers will have to stop their jobs until repairs are made. Indeed, power fail­
ures can stop work in today’s world.

One of the authors was once an expert witness in a software breach-of- 
contract lawsuit. While being deposed in Boston there was a power failure, and 
the court stenographer could not record the transcript. As a result, four attor­
neys, the stenographer, and two expert witnesses spent about two hours waiting 
until the deposition could continue. All of us were being paid our regular rates 
during the outage. We are so dependent on computers and software that work 
stops cold when the equipment is unavailable.

Table 1.3  Occupation Group Software Usage Circa 2011

	 Function	 Lines of	 Daily Usage	 Packages 
Occupation Groups	 Points	 Code	 Hours	 Used

Military planners	 5,000,000	 295,000,000	 6.50	 30

Physicians	 3,000,000	 177,000,000	 3.00	 20

FBI agents	 1,500,000	 88,500,000	 3.50	 15

Military officers	 775,000	 45,725,000	 3.50	 20

Attorneys	 350,000	 20,650,000	 4.00	 10

Airline pilots	 350,000	 20,650,000	 7.00	 15

Air-traffic controllers	 325,000	 19,175,000	 8.50	 3

IRS tax agents	 175,000	 10,325,000	 5.00	 10

Accountants	 175,000	 10,325,000	 5.00	 12

Pharmacists	 150,000	 8,850,000	 4.00	 6

Electrical engineers	 100,000	 5,900,000	 5.50	 20

Software engineers	 75,000	 4,425,000	 7.00	 20

Civil engineers	 65,000	 3,835,000	 5.00	 6

Police detectives	 60,000	 3,540,000	 3.50	 12

Project managers	 50,000	 2,950,000	 2.00	 7

Real estate agents	 30,000	 1,770,000	 4.00	 7

Bank tellers	 25,000	 1,475,000	 6.00	 8

School teachers	 15,000	 885,000	 1.50	 4

Retail clerks	 15,000	 885,000	 7.00	 5

AVERAGES	 643,947	 37,992,895	 4.82	 12
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Similar occurrences take place after hurricanes and natural disasters that 
shut down power. Many retail establishments are unable to record sales infor­
mation, and some stay closed even though workers and potential customers are 
both available. If computers and software are out of service, many businesses 
can no longer operate.

Software and computers are so deeply enmeshed in modern business and 
government operations that the global economy is at serious risk. As military 
planners know, nuclear explosions in the atmosphere emit an electromagnetic 
pulse (EMP) that damages transistors and electrical circuits. They can also 
cause explosions of liquid fuels such as gasoline and can detonate stored 
weapons.

Such “ebombs” can be designed and detonated high enough so that they 
don’t cause injuries or death to people, but instead cause major destruction of 
electronic devices such as radar, electric power generation, television, comput­
ers, and the like.

As of 2011, it is thought that most major countries already have ebombs 
in  their arsenals. CBS news reported that one or more ebombs shut down 
the electric capacity of Baghdad without doing physical damage to buildings 
or  personnel during the second Iraq war. This could be one of the rea­
sons why restoring power to Baghdad after the hostilities ended has been so 
difficult.

A final reason that software quality is important is because dozens of gov­
ernment agencies and thousands of companies have personal information about 
us stored in their computers. Therefore, both quality and security are critical 
topics in 2011.

Table 1.4 shows examples of the kinds of organizations that record personal 
information and the probable number of people who work in those organiza­
tions who might have access to data about our finances, our Social Security 
numbers, our health-care records, our dates of birth, our jobs, our families, our 
incomes, and many other personal topics.

Given the number of government agencies and corporations that record vital 
data about citizens, and the number of people who have access to that data, it is 
no wonder that identity theft is likely to hit about 15% of U.S. citizens within 
the next five years.

A Congressional report showed that the number of U.S. cyber attacks 
increased from about 43,000 in 2008 to more than 80,000 in 2009. As this 
book is being written, probably more than 10,000 U.S. hackers are actively 
engaged in attempting to steal credit card and financial information. Computers, 
networks, and smart phones are all at considerable risk. Security vulnerabilities 
are linked closely to poor quality, and many attacks are based on known 
quality flaws.
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Table 1.4  Estimated Applications with Personal Data

	 Function	 Lines of	 Personnel	 Packages 
Organizations	 Points	 Code	 with Access	 Used

Internal Revenue Service	 150,000	 7,500,000	 10,000	 10

Banks	 125,000	 6,250,000	 90,000	 12

Insurance companies	 125,000	 6,250,000	 75,000	 15

Credit card companies	 125,000	 6,250,000	 3,000	 10

Credit bureaus	 120,000	 6,000,000	 1,500	 9

Census Bureau	 100,000	 5,000,000	 1,000	 5

State tax boards	 90,000	 4,500,000	 200	 5

Airlines	 75,000	 3,750,000	 250	 12

Police organizations	 75,000	 3,750,000	 10,000	 5

Hospitals	 75,000	 3,750,000	 1,000	 5

Web-based stores	 75,000	 3,750,000	 1,500	 12

Municipal tax boards	 50,000	 2,500,000	 20	 3

Motor vehicle department	 50,000	 2,500,000	 200	 3

Physicians offices	 30,000	 1,500,000	 50	 6

Dental offices	 30,000	 1,500,000	 50	 6

Schools/universities	 25,000	 1,250,000	 125	 8

Clubs and associations	 20,000	 1,000,000	 250	 3

Retail stores	 20,000	 1,000,000	 100	 4

TOTALS	 1,360,000	 68,000,000	 194,245	 133

Because computers and software are now the main tools that operate indus­
try and government, software quality and software security are among the most 
important topics of the modern world. Indeed, the importance of both quality 
and security will increase over the next decade.

From an economic standpoint, higher software quality levels can shorten 
development schedules, lower development and maintenance costs, improve 
customer satisfaction, improve team morale, and improve the status of the soft­
ware engineering profession all at the same time.

Defining Software Quality

Quality has always been a difficult topic to define, and software quality has 
been exceptionally difficult. The reason is that perceptions of quality vary from 
person to person and from object to object.
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For software quality for a specific application, the perceptions of quality 
differ among clients, developers, users, managers, software quality personnel, 
testers, senior executives, and other stakeholders. The perceptions of quality 
also differ among quality consultants, academics, and litigation attorneys. 
Many definitions have been suggested over the years, but none have been totally 
satisfactory or totally adopted by the software industry, including those embod­
ied in international standards.

The reason that quality in general and software quality in particular have 
been elusive and hard to pin down is because the word “quality” has many 
nuances and overtones. For example, among the attributes of quality can be 
found these ten:

1.	Elegance or beauty in the eye of the beholder

2.	Fitness of use for various purposes

3.	Satisfaction of user requirements, both explicit and implicit

4.	Freedom from defects, perhaps to Six Sigma levels

5.	High efficiency of defect removal activities

6.	High reliability when operating

7.	Ease of learning and ease of use

8.	Clarity of user guides and HELP materials

9.	Ease of access to customer support

10.	Rapid repairs of reported defects

To further complicate the definition, quality often depends on the context in 
which a software component or feature operates. The quality of a software 
component is not an intrinsic property—the exact same component can be of 
excellent quality or highly dangerous depending on the environment in which it 
operates or the intent of the user.

This contextual nature of software quality is a fundamental challenge and 
applies to each of the ten attributes just listed. What is elegant in one situation 
might be downright unworkable in another; what is highly reliable under cer­
tain conditions can quickly break down in others.

A closely related complication is what Brooks calls “changeability” of soft­
ware. “In short, the software product is embedded in a cultural matrix of appli­
cations, users, laws, and machine vehicles. These all change continually, and 
their changes force change upon the software product.” (Brooks 1995, p.185)
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This brings us to the distinction between testing and software quality. 
Software quality is often loosely equated with the activities of testing or quality 
assurance. However, contextuality and Brooks’ notion of changeability of soft­
ware are the reasons why software quality cannot be equated with testing or 
quality assurance.

Testing can only tackle known unknowns. If you don’t know what you’re 
testing for, you are not, by definition, conducting tests. But software, by its very 
nature is subject to unknown unknowns. No amount of functional or nonfunc­
tional testing can be designed to detect and correct these problems. For example, 
the behavior of the application can change when

•• One or more application components are switched out for new components

•• Components change for technology reasons (such as version upgrades)

•• Components change for business reasons (such as for new features or a 
change in workflow)

•• Or the application’s environment (perhaps the technology stack, for 
example) changes

It is impossible to devise tests for these conditions in advance. However, from 
experience we know that some applications are more robust, reliable, and 
dependable than others when the environment around them changes. Some 
applications are much easier to modify or extend in response to pressing busi­
ness needs. These attributes of an application—robustness, dependability, modi­
fiability, and so on—are reliable indicators of application quality that go beyond 
the defects identified during testing or the process inefficiencies or compliance 
lapses indentified in quality assurance. Therefore, the quality of an application 
can and must be defined in such a way as to accommodate these indicators of 
quality that outrun those identified in testing and quality assurance. How the 
concepts of contextuality and changeability can be accounted for in defining 
and measuring software quality is addressed at length in Chapter 2.

There are seven criteria that should be applied to definitions of software 
quality in order to use the definition in a business environment for economic 
analysis:

1.	The quality definition should be predictable before projects start.

2.	The quality definition should be measurable during and after projects 
are finished.

3.	The quality definition should be provable if litigation occurs.
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4.	The quality definition should be improvable over time.

5.	The quality definition should be flexible and encompass all deliverables.

6.	The quality definition should be extensible and cover all phases and activities.

7.	The quality definition should be expandable to meet new technologies 
such as cloud computing.

In addition, the various nuances of quality can be categorized into seven 
major focus areas or quality types:

1.	Technical or Structural quality, which includes reliability, defects, and 
defect repairs

2.	Process quality, which includes development methods that elevate quality

3.	Usage quality, which includes ease of use and ease of learning

4.	Service quality, which includes access to support personnel

5.	Aesthetic quality, which includes user satisfaction and subjective topics

6.	Standards quality, which includes factors from various international 
standards

7.	Legal quality, which includes claims made in lawsuits for poor quality

The reason that taxonomy of quality types is needed is because the full set of 
all possible quality attributes encompasses more than 100 different topics. 
Table 1.5 lists a total of 121 software quality attributes and ranks them in order 
of importance.

The ranking scheme ranges from +10 for topics that have proven to be 
extremely valuable to a low of −10 for topics that have demonstrated extreme 
harm to software projects.

Table 1.5  Seven Types of Software Quality Factors

	 Quality Factors	 Value

	 Technical Quality Factors	

1	 Few requirements defects	 10.00

2	 No toxic requirements	 10.00

3	 Zero error-prone modules	 10.00

(Continued)
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Table 1.5  (Continued)

	 Quality Factors	 Value

	 Technical Quality Factors	

4	 Low defect potentials	 10.00

5	 Use of certified reusable code	 10.00

6	 Low rates of severity 1 and 2 defects	 10.00

7	 High reliability	 9.90

8	 Strong security features	 9.90

9	 Few design defects	 9.50

10	 Few coding defects	 9.50

11	 Low bad-fix injection rate	 9.50

12	 Low rates of invalid defect reports	 9.50

13	 Low rates of legacy defects	 9.50

14	 Easy conversion to SaaS format	 9.00

15	 Easy conversion to Cloud format	 9.00

16	 Fault tolerance	 8.00

17	 Few defects in test cases	 8.00

18	 Low cyclomatic complexity	 7.50

19	 Low entropy	 7.00

	 Process Quality Factors	

20	 Customer support of high quality	 10.00

21	 High defect detection efficiency (DDE)	 10.00

22	 High defect removal efficiency (DRE)	 10.00

23	 Accurate defect measurements	 10.00

24	 Use of formal defect tracking	 10.00

25	 Accurate defect estimates	 10.00

26	 Low total cost of ownership (TCO)	 10.00

27	 Executive support of quality	 10.00

28	 Team support of quality	 10.00

29	 Management support of quality	 10.00

30	 Accurate quality benchmarks	 10.00

31	 Effective quality metrics	 10.00

32	 Minimizing hazards of poor quality	 10.00

33	 Use of formal quality improvement plan	 10.00

34	 COQ: appraisal	 10.00
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	 Quality Factors	 Value

	 Process Quality Factors	

35	 COQ: prevention	 10.00

36	 COQ: internal failure	 10.00

37	 COQ: external failure	 10.00

38	 Cost of learning (COL)	 10.00

39	 Quality improvement baselines	 9.90

40	 Function point quality measures	 9.80

41	 Quality and schedules	 9.00

42	 Quality and costs	 9.00

43	 Use of formal inspections	 9.00

44	 Use of automated static analysis	 9.00

45	 Use of formal test case design	 9.00

46	 Use of reusable test data	 9.00

47	 Use of formal SQA team	 9.00

48	 Use of trained test personnel	 9.00

49	 Use of formal test library controls	 9.00

50	 Use of formal change management	 9.00

51	 Use of Six Sigma for software	 9.00

52	 Use of Team Software Process (TSP)	 9.00

53	 Use of Agile methods	 9.00

54	 Use of Rational methods (RUP)	 9.00

55	 Use of hybrid methods	 9.00

56	 Use of Quality Function Deployment (QFD)	 9.00

57	 Use of trained inspection teams	 9.00

58	 Use of CMMI levels = > 3	 9.00

59	 Use of legacy renovation tools	 9.00

60	 Low rates of false-positive defects	 9.00

61	 Low rates of duplicate defect reports	 8.75

62	 Use of refactoring and restructuring	 8.50

63	 Six-Sigma quality measures	 8.50

64	 High test coverage	 8.00

65	 Low Cost of Quality (COQ)	 8.00

66	 Use of automated test tools	 8.00

(Continued)
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Table 1.5  (Continued)

	 Quality Factors	 Value

	 Process Quality Factors	

67	 Use of story point quality metrics	 2.00

68	 Use of Use Case point quality metrics	 2.00

69	 Use of waterfall methods	 1.00

70	 Lines of code quality measures	 −5.00

71	 Use of CMMI levels = < 2	 −5.00

72	 Cost-per-defect quality measures	 −7.00

73	 Executive indifference to high quality	 −10.00

74	 Management indifference to high quality	 −10.00

75	 Team indifference to high quality	 −10.00

76	 Customer indifference to high quality	 −10.00

	 Usage Quality Factors	

77	 Ease of use	 10.00

78	 Useful features	 10.00

79	 Ease of learning	 10.00

80	 Good tutorial manuals	 10.00

81	 Good training courses	 10.00

82	 Good on-line HELP	 10.00

83	 Useful HELP information	 9.75

84	 Defect repair costs	 9.25

85	 Low cost of learning (COL)	 9.25

86	 User error handling	 9.00

87	 Speed of loading	 9.00

88	 Speed of usage	 9.00

89	 Good nationalization for global products	 9.00

90	 Documentation defects	 9.00

91	 Easy export of data to other software	 9.00

92	 Easy import of data from other software	 9.00

93	 Useful manuals and training	 8.50

94	 Good assistance from live experts	

	 Service Quality Factors	

95	 Good customer service	 9.50

96	 Rapid defect repair speed	 9.25

97	 Good technical support	 9.00
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	 Quality Factors	 Value

	 Service Quality Factors	

98	 Good HELP desk support	 9.00

99	 Use of formal incident management	 8.00

100	 Use of ITIL policies	 8.00

	 Aesthetic Quality Factors	

101	 High user satisfaction	 10.00

102	 Superior to competitive applications	 10.00

103	 Superior to legacy applications	 10.00

104	 Quick start-up and shut-down times	 9.00

105	 No feature bloat	 7.00

	 Standards Quality Factors	

106	 ISO/IEEE standards compliance	 10.00

107	 Certification of reusable materials	 10.00

108	 Corporation standards compliance	 10.00

109	 Certification of test personnel	 8.00

110	 Certification of SQA personnel	 8.00

111	 Portability	 7.00

112	 Maintainability	 6.00

113	 Scalability	 5.00

	 Legal Quality Factors	

114	 Good warranty	 10.00

115	 Partial warranty: replacement only	 4.00

116	 Litigation for poor quality—consequential	 −10.00

117	 Litigation for poor quality—contractual	 −10.00

118	 Litigation for poor quality—financial loss	 −10.00

119	 Litigation for poor quality—safety	 −10.00

120	 Litigation for poor quality—medical	 −10.00

121	 No warranty expressed or implied	 −10.00

A total of 121 quality factors is far too cumbersome to be useful for day-to-
day quality analysis. Table 1.6 lists the top 12 quality factors if you select only 
the most significant factors in achieving quality based on measurements of sev­
eral thousand applications.

As of 2011, 11 of these 12 quality factors are technically achievable. Item 
114 on the list, Good warranty, is not yet practiced by the software industry. 
This situation needs to change, and the software industry needs to stand behind 
software applications with effective warranty coverage.
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Table 1.6  The 12 Most Effective Software Quality Factors

1.	 Low defect potentials

2.	 Effective defect prevention methods

3.	 High defect detection efficiency (DDE)

4.	 High defect removal efficiency (DRE)

5.	 Use of pretest inspections

6.	 Use of pretest static analysis

7.	 Use of formal test case design

8.	 Good ease of learning

9.	 Good ease of use

10.	 Good technical support

11.	 High user satisfaction

12.	 Good warranty

Though all 121 of the quality factors are important, in order to deal with the 
economic value of quality, it is obvious that the factors have to be capable of 
quantitative expression. It is also obvious that the factors have to influence 
these seven topics:

1.	The costs of development, maintenance, enhancement, and support.

2.	The schedules for development, maintenance, enhancement, and support.

3.	The direct revenue that the application will accrue if it is marketed.

4.	The indirect revenue that might accrue from services or related products.

5.	The learning curve for users of the application.

6.	The operational cost savings that the application will provide to users.

7.	The new kinds of business opportunities that the application will pro­
vide to users.

This book concentrates on software quality factors that have a tangible 
impact on costs and revenue. And to deal with the economic value of these 
quality factors, the book addresses three critical topics:

•• What are the results of “average quality” in terms of costs, schedules, rev­
enue, and other financial topics? Once defined, average quality will pro­
vide the baseline against which economic value can be measured.
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•• What are the results of “high quality” in terms of cost reduction, schedule 
reduction, higher revenues, new market opportunities, and other financial 
topics?

•• What are the consequences of “low quality” in terms of cost increases, 
schedule increases, reduced revenue, loss of customers, and other financial 
topics?

Usually, more insights result from polar opposites than from average values. 
Therefore the book concentrates on the economic value from high quality and 
the economic losses from low quality.

While average quality is important, it is not very good, nor has it ever been 
very good for software. Therefore, it is important to know that only better-
than-average software quality has tangible economic values associated with it.

Conversely, low software quality brings with it some serious economic con­
sequences, including the threat of class-action litigation, the threat of breach of 
contract litigation, and, for embedded software in medical devices, even the 
potential threat of criminal charges.

Defining Economic Value and Defining the Value 
of Software Quality

Not only is “quality” an ambiguous term because of multiple viewpoints, but 
the term “value” is also ambiguous for the same reason. Indeed the concept of 
economic value has been a difficult one for every industry and for all forms of 
economic theory for more than 150 years.

Some economic theories link value to cost of production and to the price of 
various commodities. Other economic theories link value to usage of the same 
commodities. John Ruskin even assigned a moral element to value that dealt 
with whether wealth or various commodities were used for beneficial or harm­
ful purposes. All of these theoretical economic views about value are interesting 
but somewhat outside the scope of this book.

For software, the perception of economic value can vary between enterprises 
that produce software and enterprises that consume or use software. These two 
views correspond to classic economic theories that assign value based on either 
production or on usage—both are discussed.

But software has another view of value that is not dealt with very often in 
standard economic theories. In modern businesses and governments, the people 
who pay for internal software application development are neither the produc­
ers nor the consumers.
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Many software projects are commissioned and funded by executives or 
senior managers who will probably never actually use the software itself. These 
senior executives have a perception of value that needs to be considered—at the 
executive level, value of software can be delineated in a few different ways:

1.	 Software that can lower current operational costs

2.	 Software that can increase revenue by selling more current products

3.	 Software that can increase revenue by creating innovative new lines of 
business or by producing novel new products

For the first 20 years of the software industry between about 1950 and 1970, 
operating cost reduction was the primary economic reason for building soft­
ware applications. Many clerical and paper-pushing jobs were converted from 
manual labor to computers.

From about 1970 to 1990, computers and software started to be aimed at 
improving manufacturing and marketing capabilities so that companies could 
build and sell more of their current products. Robotic manufacturing and 
sophisticated customer support and inventory management systems made sig­
nificant changes in industrial production, marketing, and sales methodologies.

From about 1990 through today, computers and software have been rapidly 
creating new kinds of businesses that never existed before in all of human his­
tory. Consider the products and business models that are now based on the 
Internet and the World Wide Web.

Modern companies such as Amazon, Google, and eBay are doing forms of 
business that could not be done at all without software and the Web. At a lower 
level, computer gaming is now a multi-billion dollar industry that is selling 
immersive 3D products that could not exist without software. In other words, 
the third dimension of economic value is “innovation” and the creation of 
entirely new kinds of products and new business models.

In sum, when considering the economics of software and also of software 
quality, we need to balance three distinct threads of analysis:

1.	Operating cost reductions

2.	Revenue from increasing market share of current products or services

3.	Revenue from inventing entirely new kinds of products and services

To come to grips with both the value of software itself and economic value 
of software quality, it is useful to explore a sample of these disparate views, 
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including both the value of high quality levels and the economic harm from 
poor quality levels. In Chapter 7 we present quantitative frameworks for meas­
uring the operating costs and the business impact of software quality.

The Economic Value of Software and Quality to Enterprises 
That Build Internal Software for Their Own Use

Building software internally for corporate or government operations was the 
first application for computers in a business setting. The reason this was the 
first response is because there were no other alternatives in the late 1950s and 
early 1960s due to the lack of other sources for software.

In the 1960s when computers first began to be widely used for business pur­
poses, there were few COTS companies and no enterprise-resource planning 
companies (ERP) at all. The outsource business was in its infancy, and offshore 
outsourcing was almost 20 years in the future. The initial use of computers was 
to replace labor-intensive paper operations with faster computerized applica­
tions. For example, insurance claims handling, accounting, billing, taxation, 
and inventory management were all early examples of computerization of busi­
ness operations.

The software for these business applications were built by the companies or 
government groups that needed them. This began an interesting new economic 
phenomenon of large companies accumulating large software staffs for building 
custom software even though software had nothing to do with their primary 
business operations.

By the 1990s, many banks, insurance companies, and manufacturing compa­
nies had as many as 10% of their total employment engaged in the develop­
ment, maintenance, and support of custom internal software.

The same phenomenon occurred for the federal government, for all 50 of the 
state governments, and for about the 125 largest municipal governments.

In 2011, the 1,000 largest U.S. companies employed more than 1,000,000 
software engineers and other software occupations. Some of these companies 
are very sophisticated and build software well, but many are not sophisticated 
and have major problems with cost overruns, schedule slippage, and outright 
cancellation of critical software projects.

The same statement is true of government software development. Some agen­
cies are capable and build software well. But many are not capable and experi­
ence cancellations, overruns, and poor quality after deployment.

Examples of enterprises that build their own custom software include Aetna, 
Citizens, Proctor and Gamble, Ford and General Motors, Exxon Oil, the fed­
eral government, the state of California, the city of New York, and thousands 
of others.

Defining Economic Value and Defining the Value of Software Quality
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Most internal software development groups operate as cost centers and are 
not expected to be profitable. However, they may charge other operating units 
for their services. Some software groups are funded by corporations as overhead 
functions, in which case they work for free. Very few operate as profit centers 
and sell their services to other companies as well as to internal business units.

Between about 1965 and 1985 these internal development groups were 
building applications for two main purposes:

1.	To reduce operational costs by automating labor-intensive manual 
activities

2.	To allow companies to offer new and improved services to customers

By the end of the last century and continuing through 2011, the work patterns 
have shifted. About 75% of “new” applications in 2011 were replacements for 
aging legacy applications built more than 15 years ago. These aging legacy appli­
cations require so much work to keep them running and up to date that more 
than 50% of internal software staffs now work on modifying existing software.

And, of course, the software personnel spend a high percentage of every 
working day finding and fixing bugs.

Since the early 1990s outsource vendors, COTS vendors, and open source 
vendors have entered the picture. As a result, the roles of internal software 
groups are evolving. Due to the recession of 2008 through 2010, many internal 
software groups have been downsized, and many others are being transferred to 
outsourcing companies.

As of 2011 only about 20% of the work of internal software groups involves 
innovation and new forms of software. The new forms of innovative software 
center on web applications, cloud computing, and business intelligence. How­
ever, numerous software projects are still being built by internal software groups 
even if the majority of these “new” projects are replacements or consolidations 
of aging legacy applications.

The economic value of software quality for internal software projects centers 
on these topics:

•• Reduced cancellation rates for large applications

•• Earlier delivery dates for new applications

•• Reduced resistance from operating units for accepting new software

•• Faster learning curves for bringing users up to speed for new software

•• More and better services and products for clients
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•• Reduced development costs for new applications

•• Reduced maintenance costs for released applications

•• Reduced customer support costs for released applications

•• Reduced executive dissatisfaction with the IT function

The economic consequences of low quality for in-house development include

•• Protracted delays in delivering new applications

•• Major cost overruns for new applications

•• High probability of outright cancellation for large new applications

•• Damages to business operations from poor quality

•• Damages to customer records from poor quality

•• Executive outrage over poor performance of IT group

•• High odds of replacing in-house development with outsourcing

•• Long learning curves for new applications due to poor quality

•• Poor customer satisfaction

•• High maintenance costs due to poor quality

•• High customer support costs due to poor quality

The internal software development community does not do a very good job on 
software quality compared to the embedded software community, the systems 
software community, the defense software community, or even the commer­
cial software community. One of the reasons why many companies are moving 
to outsource vendors is because internal software quality has not been effective.

Among the gaps in software quality control for the internal software com­
munity can be found poor quality measurements, failure to use effective defect 
prevention techniques, failure to use pretest inspections and static analysis 
tools, and failure to have adequately staffed Software Quality Assurance (SQA) 
teams. In general, the internal software community tests software applications 
but does not perform other necessary quality activities.

Poor quality control tends to increase executive dissatisfaction with the IT 
community, lower user satisfaction, and raise the odds that enterprises will 
want to shift to outsourcing vendors.

Defining Economic Value and Defining the Value of Software Quality
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The Economic Value of Software and Quality to Internal 
Software Users

As of mid-2010 the Bureau of Labor Statistics reported that employment for 
the United States is about 139,000,000. (Unfortunately, this number is down 
about 7,000,000 from the 2007 peak before the “Great Recession” when U.S. 
employment topped 146,000,000.)

Of these U.S. workers, about 20% are daily software and computer users, 
roughly 27,800,000. Some of these people who work for small companies use 
only a few commercial software packages such as spreadsheets and word proc­
essors. However, about 40% of these workers are employed by either compa­
nies or government agencies that are large enough to build internal software. In 
other words, there are about 11,120,000 workers who use internally developed 
software applications as part of their daily jobs.

Note that these users of computers and software are not “customers” in the 
sense that they personally pay for the software that they use. The software is 
provided by corporations and government agencies so that the workers can 
carry out their daily jobs.

Examples of common kinds of internal software used by companies circa 
2011 include retail sales, order entry, accounts payable and receivable, airline 
and train reservations, hotel reservations, insurance claims handling, vehicle 
fleet control, automobile renting and leasing, shipping, and cruise line book­
ings. Other examples include hospital administration, Medicare and Medicaid, 
and software used by the Internal Revenue Service (IRS) for taxation.

In today’s world, internal development of software is primarily focused on 
applications that are specific to a certain business and hence not available from 
COTS vendors. Of course, the large enterprise-resource planning (ERP) compa­
nies such as SAP, Oracle, PeopleSoft, and the like have attempted to reduce the 
need for in-house development. Even the most complete ERP implementations 
still cover less than 50% of corporate software uses.

In the future, Software as a Service (SaaS), Service-oriented Architecture 
(SOA), and cloud computing will no doubt displace many in-house applications 
with equivalent Web-based services, but that time is still in the future.

The economic value of high-quality internal software to users and stakehold­
ers has these factors:

•• Reduction in cancelled projects

•• Reduction in schedule delays

•• Reduction in cost overruns
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•• Reduction in user resistance to new applications

•• Rapid deployment of new applications

•• Short learning curves to get up to speed in new applications

•• Higher user satisfaction

•• Higher reliability

•• Better and more reliable customer service

•• Reduced maintenance costs for released applications

•• Reduced customer support costs for released applications

The economic consequences of low quality for internal users and stakeholders 
include

•• Risk of cancelled projects

•• Schedule delays for large applications

•• Cost overruns for large applications

•• Business transaction errors that damage customers or clients

•• Business transaction errors that damage financial data

•• Possible class-action litigation from disgruntled customers

•• Possible litigation from customers suffering business losses

•• Possible litigation from shareholders about poor quality

•• Protracted delays in delivering new services

•• Poor customer satisfaction

•• High maintenance costs due to poor quality

•• High customer support costs due to poor quality

For more than 50 years, internal software has been a mainstay of many corpo­
rations. However, due in large part to poor quality levels, a number of corpora­
tions and some government agencies are re-evaluating the costs and value of 
internal development. Outsourcing is increasing, and international outsourcing 
is increasing even more quickly.

Defining Economic Value and Defining the Value of Software Quality
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Process improvements are also popular among internal software development 
groups. These range from being moderately successful to being extremely suc­
cessful. As is discussed throughout this book, success tends to correlate with 
improved quality levels.

The Economic Value of Software and Quality to Commercial 
Software Vendors

Because there are now thousands of commercial software companies and many 
thousands of commercial software applications, it is interesting to realize that 
this entire multibillion dollar industry is younger than many readers of this 
book.

The commercial software business is a by-product of the development of 
electronic computers and only began to emerge in the 1960s. Word processing 
only entered the commercial market in about 1969 as an evolution of electric 
typewriters augmented by storage for repetitive text such as forms and ques­
tionnaires.

Spreadsheets first became commercial products circa 1978 with VisiCalc, 
although there were earlier implementations of computerized spreadsheets by 
IBM and other computer and software companies.

A spreadsheet patent was filed in 1971 by Reny Pardo and Remy Landau. 
This patent became famous because it was originally rejected by the U.S. patent 
office as being pure mathematics. It was only in 1983 that the Patent Office was 
overruled by the courts and software implementations of mathematical algo­
rithms were deemed to be patentable.

As this book is written, there are more than 77,000 software companies in 
the United States. The software industry has generated enormous revenue and 
enormous personal wealth for many founders such as Bill Gates of Microsoft, 
Steve Jobs of Apple, Larry Ellison of Oracle, Larry Page and Sergey Brin of 
Google, Jeff Bezos of Amazon, and quite a few more.

As of 2011, about 75% of the revenue of software companies comes from 
selling more and more copies of existing applications such as Windows and 
Microsoft Office. About 25% of the revenue of software companies comes 
from innovation or the creation of new kinds of products and services, as dem­
onstrated by Google, Amazon, and hundreds of others.

This is an important distinction because in the long run innovation is the fac­
tor that generates the greatest economic value. Companies and industries that 
stop innovating will eventually lose revenues and market share due to satura­
tion of the markets with existing products.

One other interesting issue about innovation is that of “copy cats.” After a 
new kind of software application hits the market, fast-followers often sweep 



25

right into the same market with products that copy the original features but 
include new features as well. In the commercial software business these fast fol­
lowers tend to be more successful than the original products, as can be seen by 
looking at the sales history of VisiCalc and Microsoft Excel.

A number of software companies are now among the largest and wealthiest 
companies in the world. There are also thousands of medium and small soft­
ware companies as well as giants. Examples of software companies include 
CAST, Microsoft, Symantec, IBM, Google, Oracle, SAP, Iolo, Quicken, Com­
puter Aid Inc. and hundreds of others.

The primary value topic for commercial software itself is direct revenue, 
with secondary value deriving from maintenance contracts, consulting services, 
and related applications.

For example, most companies that lease large enterprise resource-planning 
(ERP) packages such as Oracle also bring in consulting teams to help deploy the 
packages and train users. They almost always have maintenance contracts that 
can last for many years.

As to the economic value of software quality in a commercial context, the 
value of quality to the commercial vendors themselves stems from these topics:

•• Reduced cancellation rates for large applications

•• Earlier delivery dates for new applications

•• Favorable reviews by the press and user groups

•• Reduced development costs for new applications

•• Reduced maintenance costs for released applications

•• Reduced customer support costs for released applications

•• Increased market share if quality is better than competitors

•• Fewer security flaws in released applications

The economic consequences of low quality for commercial vendors include

•• Possible class-action litigation from disgruntled customers

•• Possible litigation from customers suffering business losses

•• Protracted delays in delivering new applications

•• Unfavorable reviews by the press and user associations

•• Poor customer satisfaction

Defining Economic Value and Defining the Value of Software Quality
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•• Loss of customers if competitive quality is better

•• High maintenance costs due to poor quality

•• High customer support costs due to poor quality

•• Elevated numbers of security flaws in released applications

The commercial software world has only a marginal reputation for software 
quality. Some companies such as IBM do a good job overall. Others such as 
Symantec, Oracle, and Microsoft might try to do good jobs but tend to release 
software with quite a few bugs still latent.

If the commercial software vendors were really at state-of-the art levels of 
quality control, then software warranties would be both common and effective. 
Today, the bulk of commercial software “warranties” include only replacement 
of media. There are no guarantees that software will work effectively on the 
part of commercial software vendors.

The Economic Value of Software and Quality to COTS Users 
and Customers

As of 2011 there are about 14,659,956 U.S. companies that use computers and 
software. But the largest 1,000 companies probably use 50% of the total quan­
tity of COTS packages.

There are more than 150,000 government organizations that use computers 
and COTS software when federal, state, and municipal agencies are considered 
as a set (roughly 100,000 federal and military sites; 5,000 state sites; and 
50,000 municipal sites).

The main economic reason that companies, government agencies, and indi­
viduals purchase or lease commercial software packages is that packaged soft­
ware is the least expensive way of gaining access to the features and functions 
that the package offers.

If we need an accounting system, an inventory system, and billing system, or 
even something as fundamental as a word processor or a spreadsheet, then 
acquiring a package has been the most cost-effective method for more than 
50 years.

For a company or user to attempt to develop applications with features that 
match those in commercial packages, it would take months or even years. We 
buy software for the same reason we buy washing machines and automobiles: 
they are available right now; they can be put to use immediately; and if we are 
lucky, they will not have too many bugs or defects.

In the future, SaaS, SOA, and cloud computing will no doubt displace many 
applications with equivalent Web-based services. However, this trend is only 
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just beginning and will probably take another ten years or more to reach 
maturity.

The open source companies such as Mozilla and the availability of Web-
based packages such as Google Applications and Open Office are starting to 
offer alternatives to commercial packages that are free in many cases. As of 
2011 usage of commercial software is still more common than usage of open 
source or Web-based alternatives, but when the two compete head-to-head, the 
open source versions seem to be adding new customers at a faster rate.

Examples of companies that use COTS packages include manufacturing 
companies, law firms, medical offices, small hospitals, small banks, retail stores, 
and thousands of other companies. All government units at the federal, state, 
and municipal levels use COTS packages in large numbers, as do the military 
services. These enterprises use the software to either raise their own profitability 
or to lower operating costs, or both.

The economic value of high software quality to corporate and government 
consumers of commercial software has these factors:

•• Rapid deployment of COTS applications

•• Quicker deployment of new services and functions

•• Short learning curves to get up to speed in COTS applications

•• Minimizing the risks of in-house development

•• Minimizing the risks of outsource development

•• Reduced maintenance costs for released applications

•• Reduced customer support costs for released applications

The economic consequences of low quality for COTS users include

•• Business transaction errors that damage customers or clients

•• Business transaction errors that damage financial data

•• Possible class-action litigation from disgruntled customers

•• Possible litigation from customers suffering business losses

•• Possible litigation from shareholders about poor quality

•• Protracted delays in delivering new services

•• Poor customer satisfaction

Defining Economic Value and Defining the Value of Software Quality
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•• High maintenance costs due to poor quality

•• High customer support costs due to poor quality

As an example of the hazards of poor quality from COTS packages, one of the 
authors lives in Narragansett, Rhode Island. When the town acquired a new 
property tax software package, tax bills were about a month late in being sent 
to homeowners, and there were many errors in the calculations. The system 
also lagged in producing financial reports for the town council. Eventually, the 
package was withdrawn, and an alternate package from another vendor was 
used in its place.

A study by one of the authors of the corporate software portfolio for a large 
manufacturing company in the Fortune 500 class found that out of 3,200 appli­
cations in the portfolio, 1,120 were COTS packages acquired from about 75 
different vendors.

The total initial cost for these COTS applications was about $168,000,000. 
Annual leases amounted to about $42,000,000.

Approximately 149 people were devoted exclusively to the operation and 
maintenance of the COTS packages. In a single year, about 18,072 high-severity 
bugs were reported against the COTS applications in the portfolio.

Indeed, bugs in COTS packages are so common that one large commercial 
software vendor was sued by its own shareholders, who claimed that poor qual­
ity was lowering the value of their investments. The case was settled, but the 
fact that such a case was even filed illustrates that the COTS vendors need bet­
ter quality control.

COTS packages are valuable and useful to be sure. But due to the marginal 
to poor software quality practices of the commercial vendors, customers and 
users need to expect and prepare for significant quantities of bugs or defects 
and significant staffing and effort to keep COTS packages up and running.

The Economic Value of Software and Quality to Embedded 
Software Companies

Embedded software is present in thousands of products in 2011. For consumer 
products such as digital watches, digital cameras, smart phones, and similar 
devices, high quality is fairly common; bugs or low quality is fairly rare.

For more complex devices that might affect human life or safety, the quality 
levels are still quite good, but bugs or errors can have serious consequences for 
both those who use the software and for the companies that produce the 
devices. Bugs or errors in medical devices, automobile brake systems, aircraft 
navigation devices, and weapons systems can lead to death, injuries, and enor­
mous recall and recovery costs.
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The economic value of software for embedded software producers derives 
primarily from sales of physical equipment rather than the software itself. 
Examples of companies that create devices with embedded software include 
Boeing, Motorola, AT&T, Nokia, medical equipment companies such as 
Advanced Bionics, and many others. In total probably 10,000 companies pro­
duce embedded devices and the software within them.

As of 2011, about 45% of the revenue of embedded software companies has 
come from selling more and more copies of existing products such as digital 
watches, digital hearing aids, and digital cameras.

About 55% of the revenue of embedded software companies has come from 
innovation or the creation of new kinds of products and services that did not 
exist before, such as cochlear implants, the Amazon Kindle and other eBook 
readers, and the control systems of modern automobiles and aircraft.

The economic value of software quality inside embedded software devices 
stems from these topics:

•• Reduced cancellation rates for complex devices

•• Creating new kinds of devices never marketed before

•• Earlier delivery of new devices

•• Rapid approvals by government oversight organizations

•• Rapid customer acceptance of new devices

•• Reduced development costs for new devices

•• Reduced maintenance costs for released devices

•• Reduced customer support costs for released devices

•• Increased market share if quality is better than competitors

The economic consequences of low quality for embedded vendors include

•• Possible criminal charges if devices causes death or injury

•• Possible class-action litigation from disgruntled customers

•• Possible litigation from customers suffering business losses

•• Possible government action against medical devices for poor quality

•• Possible shareholder litigation for poor quality

•• Protracted or negative approvals by government oversight groups

Defining Economic Value and Defining the Value of Software Quality



Chapter 1  Defining Software Quality and Economic Value30

•• Poor customer satisfaction

•• Loss of customers if competitor’s quality is better

•• High maintenance costs for devices with poor-quality software

•• High customer support costs for devices with poor-quality software

Because complex devices won’t operate without high-quality software, the 
embedded software world has one of the best reputations for software quality 
and also for customer support. Some companies such as Advanced Bionics, 
Motorola, Apple, and Garmin do a good job overall.

A sign of better-than-average quality control in the embedded domain is the 
fact that many embedded device companies have product warranties. In general, 
warranties are more common and more complete for embedded software than 
for other forms of software.

The Economic Value of Software and Quality to Embedded 
Equipment Users

The economic value of software to users of equipment controlled by embedded 
software is the ability to operate complex devices that would not exist without 
the embedded software. Examples of such devices include robotic manufactur­
ing, undersea oil exploration, medical equipment such as MRI devices and 
cochlear implants, navigation packages on board ships and aircraft, and all 
forms of modern communication including television, radio, and wireless.

The major difference between embedded software and other kinds of soft­
ware is that users are operating physical devices and might not even be aware 
that the devices are controlled by software. Even if users know that embedded 
software is in a device, they have no direct control over the software other than 
the controls on the devices themselves. For example, users can make many 
adjustments to digital cameras but only by means of using the knobs, buttons, 
and screens that the cameras have and not by direct changes to the embedded 
software itself.

The main economic reason that companies, government agencies, and indi­
viduals acquire embedded devices is because there are no other alternatives 
available. You either have a computerized magnetic resonance imaging device 
(MRI) or you can’t perform that kind of diagnosis. There are no other choices.

Embedded devices have also lowered the costs and expanded features in 
many consumer products. For example, a number of modern digital watches 
integrate standard time keeping with stop watches, elapsed time keeping, and 
even tide calculations and the phases of the moon.
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Modern digital cameras have a host of functions that were not available on 
normal film cameras, such as electronic zooming in addition to optical zooming; 
red-eye correction; and the ability to switch between still and animated 
photography at will.

Usage of embedded devices has been growing exponentially for about 25 
years. As of 2011 at least 150,000,000 U.S. citizens own digital watches, digital 
cameras, or other personal embedded devices.

Approximately 1,500,000 U.S. patients have digital pacemakers, and the 
rate of increase is more than 5% per year. There are more than 5,000 installed 
MRI devices, and more than 1,000,000 U.S. patients undergo MRI diagnoses 
per year.

According to Wikipedia about 30,000 U.S. citizens now hear as a result of 
having cochlear implant surgery. (Cochlear implants use a combination of an 
external microphone and an internal computer surgically implanted under the 
skin. Small wires from the processor replace the damaged cilia in the inner ear. 
Cochlear implant devices are fully software controlled, and the software can be 
upgraded as necessary.)

Most modern factories for complex devices such as automobiles are now 
either fully or partly equipped with robotic machine tools.

Almost all modern automobiles now use embedded devices for controlling 
anti-lock brakes (which would otherwise be impossible); fuel injection; naviga­
tion packages; and in some cases controlling suspension and steering. Automo­
bile entertainment devices such as satellite radios, standard radios, DVD 
players, and the like are also controlled by embedded devices and software.

The economic value of high embedded software quality to corporate and 
government consumers involves these factors:

•• New features and functions only available from embedded devices

•• Onsite upgrades to new embedded software versions

•• Reduced maintenance due to reduction in mechanical parts

•• Rapid deployment of new equipment

•• Fewer product malfunctions

•• Quicker deployment of new services and functions

The economic consequences of low quality for embedded device users include

•• Possible death or injury from software bugs in medical devices

•• Possible death or injury from software bugs in automobiles

Defining Economic Value and Defining the Value of Software Quality
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•• Possible death or injury from software bugs in aircraft

•• Disruption of robotic manufacturing due to bugs or errors

•• Inability to make repairs without replacing embedded devices

•• Possible class-action litigation from disgruntled customers

•• Possible litigation from customers suffering business losses

•• Protracted delays in delivering new services

•• Poor customer satisfaction

•• High customer support costs due to poor quality

Modern devices controlled by embedded software are one of the greatest 
machine revolutions in all of history. There are now dozens of complicated 
devices such as drone aircraft, remotely controlled submarines, MRI medical 
devices, cochlear implants, and robotic manufacturing that would be impossi­
ble without embedded devices and the software that controls them.

Embedded software and embedded devices are advancing medical diagnosis 
and medical treatments for conditions such as deafness and heart conditions. 
Today, there are thousands of embedded devices carrying out functions that 
were totally impossible before about 1975.

The Economic Value of Software and Software  
Quality to Other Business Sectors

There are a number of other business sectors that might be discussed in the con­
text of the value of software and the value of software quality. Among these can 
be found

•• Outsource software vendors and outsource software clients and users

•• Defense software vendors and defense software clients and users

•• Systems software vendors and systems software clients and users

•• Open source software vendors and open source software clients and users

•• Gaming software vendors and gaming software clients and users

•• Smart phone software vendors and smart phone software clients and users
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The views of both value and the value of software quality in these business 
sectors, however, are similar to the sectors already discussed. High quality 
benefits costs, schedules, and customer satisfaction. Low quality leads to cost 
and schedule overruns and dissatisfied customers.

Multiple Roles Occurring Simultaneously

Many large enterprises have multiple roles going on simultaneously. For example, 
a major corporation such as AT&T performs all of these roles at the same time:

•• They build internal IT software for their own use.

•• They build web applications for marketing and customer support.

•• They build embedded software for sale or lease to clients.

•• They build systems software for sale or lease to clients.

•• They commission domestic outsource groups to build software under 
contract.

•• They commission offshore outsource groups to build software under 
contract.

•• They purchase and lease COTS packages.

•• They acquire and utilize open source software.

•• They offer business services that depend upon software.

This is a very common pattern. Many large corporations build and consume 
software of multiple types. However, regardless of the pattern, software quality 
is a critical success factor on both the development and the consumption sides 
of the equation.

Summary and Conclusions

The topic of software quality has been difficult to define for more than 50 years. 
The topic of economic value has been difficult to define for more than 150 
years. When the two topics are combined into a single book, it is necessary to 
start by considering all of the alternatives that surround both terms.
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The economic value of software needs to be analyzed from both the 
production and consumption sides of the equation.

The value of software quality needs to be analyzed in terms of the benefits of 
high quality and the harmful consequences of poor quality. And here, too, both 
the production and consumption of software need to be considered:

High quality	 Value to producers

	 Value to stakeholders and financial backers

	 Value to users and consumers

Low quality	 Risks and hazards to producers

	 Risks and hazards to stakeholders and financiers

	 Risks and hazards to users and consumers

The essential message that will be demonstrated later in the book is that a 
high level of software quality will raise the economic value of software for the 
producers, financiers, and the consumers of software applications.

Conversely, low software quality levels will degrade the economic value of 
software for both the producers and consumers of software applications.

But achieving high levels of software quality needs effective defect preven­
tion, effective pretest defect removal, effective testing, effective quality estima­
tion, effective quality measurements, effective teams, and effective management. 
Testing alone has never been sufficient to achieve high-quality software.
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