

Praise for The Economics of Software Quality

“This book provides the best treatment on the subject of economics of software
quality that I’ve seen. Peppered with valuable industry data, in-depth analysis,
empirical methods for quality improvement, and economic analysis of quality,
this book is a must-read for anyone who is interested in this subject. With the
many real-life and up-to-date examples and stories linking software quality to
daily-life activities, readers will find this book an enjoyable read.”

—Stephen H. Kan, Senior Technical Staff Member and
Program Manager, Software Quality—IBM Systems and

Technology Group, and author of Metrics
and Models in Software Quality Engineering

“Finally, a book that defines the cost and economics of software quality and
their relationship to business value. Facts such as the inability of testing alone
to produce quality software, the value of engineering-in quality, and the posi-
tive ROI are illustrated in compelling ways. Additionally, this book is a must-
read for understanding, managing, and eliminating ‘technical debt’ from
software systems.”

—Dan Galorath, CEO, Galorath Incorporated & SEER by Galorath

“Congrats to Capers and Olivier as they release their relevant, extensive, and
timely research on the costs of defects in today’s software industry. The authors
don’t stop with the causes of defects; they explore injection points, removal,
and prevention approaches to avoid the ‘technical mortgage’ associated with
defective software products. In today’s ‘quick-to-market’ world, an emphasis
on strengthening the engineering in software engineering is refreshing. If you’re
a software developer, manager, student, or user, this book will challenge your
perspective on software quality. Many thanks!”

—Joe Schofield, Sandia National Laboratories;
Vice President, IFPUG; CQA, CFPS, CSMS,

LSS BB, SEI-certified instructor

“Whether consulting, working on projects, or teaching, whenever I need
credible, detailed, relevant metrics and insights into the current capabilities and
performance of the software engineering profession, I always turn to Capers
Jones’s work first. In this important new book, he and Olivier Bonsignour make

the hard-headed, bottom-line, economic case, with facts and data, about why
software quality is so important. I know I’ll turn to this excellent reference
again and again.”

—Rex Black, President, RBCS (www.rbcs-us.com), and author of
seven books on software quality and testing, including

Managing the Testing Process, Third Edition

“This masterpiece of a book will empower those who invest in software—and
the businesses and products that depend on it—to do so wisely. It is a ground-
breaking work that rigorously applies principles of finance, economics, man-
agement, quality, and productivity to scrutinize holistically the value
propositions and myths underlying the vast sums invested in software. A must-
read if you want to get your money’s worth from your software investments.”

—Leon A. Kappelman, Professor of Information Systems,
College of Business, University of North Texas

“Capers Jones is the foremost leader in the software industry today for soft-
ware metrics. The Economics of Software Quality is a comprehensive, data-rich
study of challenges of quality software across the many application domains. It
is an essential read for software quality professionals who wish to better under-
stand the challenges they face and the cost and effectiveness of potential solu-
tions. It is clear that much research and thought has been put into this.”

—Maysa-Maria Peterson Lach, Senior Principal
Software Engineer, Raytheon Missile Systems

“In no other walk of life do we resist the necessity and validity of precise, rigor-
ous measurement, as software practitioners have so vigorously resisted for more
than fifty years. Capers Jones took up the challenge of bringing sanity and pre-
dictability to software production more than three decades ago, and now with
Olivier Bonsignour, he brings forth his latest invaluable expression of confi-
dence in applying standard engineering and economic discipline to what too
often remains the ‘Wild, Wild West’ of software development.”

—Douglas Brindley, President & CEO,
Software Productivity Research, LLC

www.rbcs-us.com

The Economics of
Software Quality

This page intentionally left blank

The Economics of
Software Quality

Capers Jones
Olivier Bonsignour

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in all
capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content
particular to your business, training goals, marketing focus, and branding interests. For more
information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Jones, Capers.
   The economics of software quality / Capers Jones, Olivier Bonsignour
     p.  cm.
   ISBN 978-0-13-258220-9 (hardcover: alk. Paper) 1. Computer software—Quality control—
Economic aspects. 2. Software maintenance—Economic aspects. 3. Computer software—
Validation. 4. Computer software—verification. I. Subramanyam, Jitendra. II. Title.
  QA76.76.Q35J674  2012
  005.1’4—dc23

20110145858

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13:	 978-0-13-258220-9
ISBN-10:	 0-13-258220-1

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, July 2011

Publisher
Paul Boger

Acquisitions Editor
Bernard Goodwin

Managing Editor
John Fuller

Full-Service Production
Manager
Julie B. Nahil

Copy Editor
Christal White

Indexer
Infodex Indexing
Services

Proofreader
Christine Clark

Editorial Assistant
Michelle Housley

Cover Designer
Nicolas Herlem

Compositor
LaurelTech

This book is dedicated to Watts Humphrey and Allan Albrecht.
Watts was a tireless champion of software quality.

Allan developed the most effective metric for studying
software quality economics.

This page intentionally left blank

ix

Contents

Foreword ���xix

Preface ���xxi

Acknowledgments��� xxvii

About the Authors�� xxxi

Chapter 1:  Defining Software Quality and Economic Value��������������������������� 1

Introduction. 1
Why Is Software Quality Important?. 1

Defining Software Quality . 8
Defining Economic Value and

Defining the Value of Software Quality . 17
The Economic Value of Software and Quality

to Enterprises that Build Internal Software
for Their Own Use. 19

The Economic Value of Software and
Quality to Internal Software Users. 22

The Economic Value of Software and
Quality to Commercial Software Vendors 24

The Economic Value of Software and
Quality to COTS Users and Customers. 26

The Economic Value of Software and
Quality to Embedded Software Companies. 28

The Economic Value of Software and
Quality to Embedded Equipment Users. 30

The Economic Value of Software and Software
Quality to Other Business Sectors 32

Multiple Roles Occurring Simultaneously. 33
Summary and Conclusions. 33

Chapter 2:  Estimating and Measuring Software Quality������������������������������� 35

Introduction. 35
Using Function Point Metrics for Defect Potentials 39
Software Defect Potentials . 39

x Contents

The Special Case of Software Requirements. 45
The Origins of Software Requirements 50
The Size, Structure, and Completeness of

Software Requirements. 52
Minimizing Software Requirements Defects. 55
Conclusions about Software Requirements Defects. 64
The Special Case of Coding Defects. 65

Estimating Software Defect Prevention. 71
Estimating Software Defect Detection

and Defect Removal . 74
Measuring Application Structural Quality . 77

Measuring Reliability. 78
Measuring Performance Efficiency. 79
Measuring Security. 80
Measuring Maintainability. 81
Measuring Size. 83
Summary of Application Structural Quality

Measurement Attributes. 83
Examples of Structural Quality Assessments. 88

Bypassing the Architecture. 88
Failure to Control Processing Volumes. 90
Application Resource Imbalances. 91
Security Weaknesses. 92
Lack of Defensive Mechanisms . 93
Desiderata for Systems Evaluating

Structural Quality. 94
Three Problems That Distort Software Economic Analysis. 95

Leakage from Software Historical Data. 97
Economic Problems with Lines of

Code (LOC) Metrics. 105
Economic Problems with Cost-per-Defect Metrics. 110
Case A: Poor Quality. 111
Case B: Good Quality . 111
Case C: Zero Defects. 114
Useful Rules of Thumb for Predicting

Software Defect Potentials . 115
Summary and Conclusions on Software

Quality Estimation and Measurement. 117

xiContents

Chapter 3:  Software Defect Prevention. 119

Introduction. 119
The Early History of Defect Prevention

Studies in the 1970s at IBM. 120
Synergistic Combinations of Defect

Prevention Methods. 125
Defect Potentials and Defect Origins. 127
Defect Prevention, Patterns, and Certified

Reusable Materials. 132
Software Defect Prevention and Application Size. 133

Analysis of Defect Prevention Results. 135
Agile Embedded Users. 136
Automated Quality Predictions. 136
Benchmarks of Software Quality Data. 137
Capability Maturity Model Integrated (CMMI) 138
Certification Programs. 140
Cost-per-Defect Measures . 142
Cost of Quality (COQ). 146
Cyclomatic Complexity Measures (and Related

Complexity Measures). 149
Defect Measurements and Defect Tracking. 156
Formal Inspections. 159
Function Point Quality Measures. 164
ISO Quality Standards, IEEE Quality

Standards, and Other Industry Standards. 171
Quality Function Deployment (QFD) 174
Risk Analysis. 177
Six Sigma. 184
Static Analysis. 185

Summary and Conclusions of Software Defect Prevention. 188

Chapter 4:  Pretest Defect Removal. 191

Introduction. 191
Small Project Pretest Defect Removal. 196
Large System Pretest Defect Removal. 201
Analysis of Pretest Defect Removal Activities. 208

Personal Desk Checking. 208
Informal Peer Reviews. 209

xii Contents

Automated Text Checking for Documents. 211
Proofs of Correctness. 220
Scrum Sessions. 222
Poka Yoke . 224
Kaizen . 226
Pair Programming . 231
Client Reviews of Specifications. 235
Independent Verification and Validation (IV&V). 237
Software Quality Assurance (SQA) Reviews 239
Phase Reviews . 246
Inspections (Requirements, Architecture,

Design, Code, and Other Deliverables). 249
User Documentation Editing and Proofreading 265
Automated Static Analysis of Source Code. 267

Summary and Conclusions about Pretest Defect Removal 277

Chapter 5:  Software Testing. 279

Introduction . 279
Black Box and White Box Testing . 291
Functional and Nonfunctional Testing. 293
Automated and Manual Testing. 293
Discussion of the General Forms of Software Testing 294
Subroutine Testing. 294
PSP/TSP Unit Testing. 295
Extreme Programming (XP) Unit Testing. 296
Unit Testing. 296
New Function Testing . 297
Regression Testing. 299
Integration Testing. 300
System Testing. 301
The Specialized Forms of Software Testing 303
Stress or Capacity Testing . 303
Performance Testing. 304
Viral Protection Testing. 304
Penetration Testing. 308
Security Testing . 309
Platform Testing. 310
Supply Chain Testing. 311
Clean Room Testing. 311

xiiiContents

Litigation Testing. 312
Cloud Testing. 313
Service Oriented Architecture (SOA) Testing. 313
Independent Testing. 314
Nationalization Testing. 315
Case Study Testing. 316
The Forms of Testing Involving Users or Clients. 316
Agile Testing . 317
Usability Testing . 317
Field Beta Testing. 318
Lab Testing . 319
Customer Acceptance Testing . 320
Test Planning. 320
Test Case Design Methods. 321
Errors or Bugs in Test Cases . 323
Numbers of Testing Stages for Software Projects. 324
Testing Pattern Variations by Industry and

Type of Software . 325
Testing Pattern Variations by Size of Application. 329
Testing Stages Noted in Lawsuits Alleging

Poor Quality. 331
Using Function Points to Estimate Test Case Volumes. 332
Using Function Points to Estimate the Numbers of

Test Personnel . 335
Using Function Points to Estimate Testing

Effort and Costs. 337
Testing by Developers or by Professional

Test Personnel . 342
Summary and Conclusions on Software Testing. 344

Chapter 6:  Post-Release Defect Removal . 347

Introduction. 347
Post-Release Defect Severity Levels 349
Severity Levels from a Structural

Quality Perspective. 351
Maintainability of Software. 358
Defect Discovery Rates by Software

Application Users. 362
Invalid Defect Reports. 363

xiv Contents

Abeyant Defects That Occur Under
Unique Conditions. 365

Duplicate Defects Reported by Many Customers. 366
First-Year Defect Discovery Rates . 367
Measuring Defect Detection Efficiency (DDE)

and Defect Removal Efficiency (DRE) 368
Variations in Post-Release Defect Reports 370
Variations in Methods of Reporting

Software Defects. 374
Who Repairs Defects after They Are Reported?. 378
Case Study 1: Development Personnel Tasked with

Maintenance Defect Repairs. 379
Case Study 2: Maintenance Specialists Handle

Defect Repairs . 380
Comparing the Case Studies. 381
Litigation Due to Poor Quality . 381
Cost Patterns of Post-Release Defect Repairs. 384
Software Occupation Groups Involved with

Defect Repairs . 385
Examining the Independent Variables of

Post-Release Defect Repairs. 392
The Size of the Application in Function Points. 393
Error-Prone Modules in Software Applications 404

User and Industry Costs from Post-Release Defects 409
Impact of Security Flaws on Corporations

and Government Agencies . 414
Customer Logistics for Defect Reports and

Repair Installation . 416
Case Study 1: A Small Application by a

Small Company . 417
Case Study 2: A Large Application by a

Large Company . 420
Measurement Issues in Maintenance and

Post-Release Defect Repairs. 425
Summary and Conclusions on Post-Release Defects. 431

Chapter 7:  Analyzing the Economics of Software Quality. 433

Introduction . 433
The Economic Value of Software . 435

xvContents

Methods of Measuring Value. 435
Funding Approval and Application Size. 443
The Impact of Software Construction Difficulties on

Software Quality . 444
Revenue Generation from Software. 449
Difference Between Software and Other Industries 453
Cost Reduction from Software. 454

Economic Impact of Low-Quality and
High-Quality Software . 460

Software Development and Maintenance. 461
Software as a Marketed Commodity. 462
Software as a Method of Human Effort Reduction. 463
Software and Innovative New Kinds of Products. 463
Technical Debt—A Measure of the Effect of

Software Quality on Software Costs 465
A Framework for Quantifying Business Value. 470
Moving Beyond Functional Quality. 476
The Impact of Software Structure on Quality 476
The Impact of Staff Training on Quality. 477
The Impact of Professional Certification

on Quality . 478
The Impact of Technology Investment on Quality. 479
The Impact of Project Management on Quality. 480
The Impact of Quality-Control Methodologies

and Tools on Quality. 481
The Impact of High and Low Quality on

Software Schedules. 484
The Impact of High and Low Quality on

Software Staffing . 484
The Impact of High and Low Quality on

Software Development Effort. 486
The Impact of High and Low Quality on

Development Productivity Rates 486
The Impact of High and Low Quality on

Software Development Costs. 487
The Impact of High and Low Quality on Development

Cost per Function Point. 489
The Impact of High and Low Quality on Project

Cancellation Rates. 490

xvi Contents

The Impact of High and Low Quality on the
Timing of Cancelled Projects . 491

The Impact of High and Low Quality on
Cancelled Project Effort. 492

The Impact of High and Low Quality on
Effort Compared to Average Projects. 492

The Impact of High and Low Quality on
Software Test Stages. 494

The Impact of High and Low Quality on
Testing as a Percent of Development 496

The Impact of High and Low Quality on Test Cases
per Function Point . 497

The Impact of High and Low Quality on Numbers
of Test Cases Created. 498

The Impact of High and Low Quality on
Test Coverage. 498

The Impact of Professional Testers on
High and Low Quality. 500

The Impact of High and Low Quality on Software
Defect Potentials. 501

The Impact of High and Low Quality on
Total Software Defects. 503

The Impact of High and Low Quality on
Defect Detection Efficiency (DDE). 504
The Impact of High Quality and Low Quality on Defect

Removal Efficiency (DRE) . 504
The Impact of High and Low Quality on

Total Defect Removal. 505
The Impact of High and Low Quality on Defects

Delivered to Customers . 507
The Impact of High and Low Quality on Delivered

Defects per Function Point. 507
Impact of High and Low Quality on Delivered

Defect Severity Levels. 508
The Impact of High and Low Quality on Severe

Defects per Function Point. 509
The Impact of High and Low Quality on

Software Reliability . 510

xviiContents

The Impact of High and Low Quality on
Maintenance and Support . 511

The Impact of High and Low Quality on
Maintenance and Support Costs. 512

The Impact of High and Low Quality on Maintenance
Defect Volumes . 513

The Impact of High and Low Quality on Software
Enhancements . 514

The Impact of High and Low Quality on
Enhancement Costs . 515

The Impact of High and Low Software Quality on
Maintenance and Enhancement Staffing. 516

The Impact of High and Low Quality on Total Effort
for Five Years. 517

The Impact of High and Low Quality on Total Cost of
Ownership (TCO) . 520

The Impact of High and Low Quality on
Cost of Quality (COQ) . 523

The Impact of High and Low Quality on
TCO and COQ per Function Point 529

The Impact of High and Low Quality on
the Useful Life of Applications. 529

The Impact of High and Low Quality on
Software Application Tangible Value. 535

The Impact of High and Low Quality on
Return on Investment (ROI). 536

The Impact of High and Low Quality
on the Costs of Cancelled Projects. 537

The Impact of High and Low Quality on
Cancellation Cost Differentials. 538

The Distribution of High-, Average-, and
Low-Quality Software Projects. 538

Summary and Conclusions on the Economics of
Software Quality. 541

High-Quality Results for 10,000 Function Points 541
Low-Quality Results for 10,000 Function Points. 542

References and Readings. 545

Index. 561

This page intentionally left blank

xix

Foreword

As a major telecommunications company, our business consists of a complex
mix of products and services. Some are decades old, and some are only emerg-
ing. In just one part of our business, customers now access sophisticated busi-
ness processes via myriad mobile devices operating on multiple platforms,
technologies, and standards. The mobile access revolution is only one example
of the continual change we must master. In several of our new markets, some of
our competitors were not even on the radar ten years ago.

The IT systems that service our customers have been built over decades of
changing regulatory frameworks, intense competition, and M&A activity; these
systems provide mission-critical network management, billing, and customer ser
vice infrastructure for our existing and emerging products. We simply don’t have
the luxury of crafting Greenfield solutions in response to pressing business needs.

Despite the complex nature of IT, our shareholders expect nothing less
than continuous improvement in service quality with simultaneous cost reduc-
tions. This has been the case in our market for quite some time and a major
operational focus for my organization. One area on which we have focused in
addressing this challenge is measuring software development productivity and
quality. As the CIO, I oversee the company’s internal information technology
organization and infrastructure, as well as all evolving software applications.
When you get down to it, the core expertise of our business is encoded in the
software that automates our mission-critical processes. It is that software
layer of our IT stack that fundamentally drives our time to market, our risk
profile, and our cost structure.

We measure software productivity to allocate resources and make informed
tradeoffs in our investments. We measure software quality at a structural level,
in addition to the functional level through testing, to make the right trade-offs
between delivery speed, business risk, and technical debt—the longer-term costs
of maintaining and enhancing the delivered solutions.

For several years now, we have been successfully measuring the quality of
our development projects and including these metrics in some of our Service
Level Agreements. We are now starting to put productivity measurements
across our portfolio side-by-side with quality measurements to get a truer pic-
ture of where we are trading present delivery agility for future business agility.

xx Foreword

The Economics of Software Quality is a landmark for three reasons. It is
practical, it is data-driven, and it goes beyond the traditional treatments of
quality to demonstrate how to manage structural quality—an important ele-
ment of software quality for our business. Just as we invest in our enterprise
architecture to actively manage the evolution of our core application software,
we are putting a strong focus on the analysis and measurement of these applica-
tions at the structural level. These measures enable my organization to take a
proactive stance to building a better future for our business and for me to
closely manage the economic fundamentals in meeting and exceeding share-
holder expectations.

As we look forward to an exciting period of rapid growth in fixed-line,
mobile, data, and on-demand products and services, I can assure you that this is
one book my management team and I will keep close at hand.

—Thaddeus Arroyo
Chief Information Officer, AT&T Services, Inc.

F. Thaddeus Arroyo, Chief Information Officer, is responsible for AT&T’s
information technology. He was appointed to his current position in January
2007, following the close of the merger between AT&T, BellSouth, and Cingu-
lar. In his role, he is responsible for directing the company’s internal informa-
tion technology organization and infrastructure, including Internet and intranet
capabilities, developing applications systems across the consumer and mobility
markets, enterprise business segments, and AT&T’s corporate systems. He also
oversees AT&T’s enterprise data centers.

xxi

Preface

This book is aimed at software managers, executives, and quality assurance
personnel who are involved in planning, estimating, executing, and maintaining
software. Managers and stakeholders need to understand the economics of soft-
ware quality when planning and developing new applications and enhancing or
maintaining existing ones.

The goal of this book is to quantify the factors that influence software qual-
ity and provide readers with enough information for them to predict and meas-
ure quality levels of their projects and applications.

To serve this goal, we consolidate an expansive body of software quality
data—data on software structural quality, software assurance processes and
techniques, and the marginal costs and benefits of improving software quality.
The book provides quantitative data on how high and low quality affect soft-
ware project schedules, staffing, development costs, and maintenance costs.
This information should enable software managers to set and track progress
toward quality targets and to make the right trade-offs between speed to mar-
ket and business risk.

We quantify the positive economic value of software quality and the high
costs of poor software quality using software quality data from large
organizations in the private and public sectors. This is not a “how to do it”
book—there are many good how-to books on processes and techniques for test-
ing, inspections, static analysis, and other quality topics. We hope to have added
a substantial amount of software quality data from real-world applications to
complement those how-to books and enable IT managers to quantify the relative
efficacy and economic value of these techniques.

In small projects, individual human skills and experience play a major role in
successful outcomes. Quality is important, but individual skill tends to be the
dominant driver of high quality.

But as projects grow larger, with development teams from 20 on up to more
than 1,000 personnel, individual skills tend to regress to the mean. Quality
becomes progressively more important because, historically, the costs of finding
and fixing bugs have been the largest known expense for large software appli-
cations. This is true of both new development as well as enhancement and
maintenance.

Most discussions of software quality focus almost exclusively on functional
quality. In this book, we expand our treatment beyond functional quality to

xxii Preface

cover nonfunctional and structural quality. Measuring structural quality
requires going beyond the quality of individual components to the quality of
the application as a whole. We show how to clearly define and repeatably meas-
ure nonfunctional and structural quality.

Reliable measurements of all three kinds of quality—structural, nonfunc-
tional, and functional—are essential for a complete treatment of the economics
of software quality. We use these quality metrics to compare a number of qual-
ity improvement techniques at each stage of the software development life cycle
and quantify their efficacy using data from real-world applications.

To achieve high-quality levels for large systems, a synergistic set of methods
is needed. These include defect prevention methods, which can reduce defect
levels; pretest defect removal methods such as inspections and static analysis;
and more than 40 kinds of testing.

Several newer kinds of development methods also have beneficial impacts on
software quality compared to traditional “waterfall” development. These
include Agile development, Crystal development, Extreme Programming (XP),
Personal Software Process (PSP), the Rational Unified Process (RUP), the Team
Software Process (TSP), and several others.

The generally poor measurement practices of the software industry have
blurred understanding of software quality economics. Many executives and
even some quality personnel tend to regard software quality as an expense.
They also tend to regard quality as a topic that lengthens schedules and raises
development costs.

However, from an analysis of about 13,000 software projects between 1973
and today, it is gratifying to observe that high quality levels are invariably
associated with shorter-than-average development schedules and lower-than-
average development costs.

The reason for this is that most projects that run late and exceed their budg-
ets show no overt sign of distress until testing begins. When testing begins, a
deluge of high-severity defects tends to stretch out testing intervals and cause
massive bursts of overtime. In general, testing schedules for low-quality, large
software projects are two to three times longer and more than twice as costly as
testing for high-quality projects. If defects remain undetected and unremoved
until testing starts, it is too late to bring a software project back under control.
It is much more cost-effective to prevent defects or to remove them prior to
testing.

Another poor measurement practice that has concealed the economic value
of software quality is the usage of the cost-per-defect metric. It has become an
urban legend that “it costs 100 times as much to fix a bug after delivery as dur-
ing development.” Unfortunately, the cost-per-defect metric actually penalizes
quality and achieves its lowest values for the buggiest software. As quality

xxiiiPreface

improves, cost per defect rises until a level of zero defects is reached, where the
cost-per-defect metric cannot be used at all.

The real economic value of high quality is only partially related to defect
repair costs. It is true that high quality leads to fewer defects and therefore to
lower defect repair costs. But its major economic benefits are due to the fact
that high quality

•• Reduces the odds of large-system cancellations

•• Reduces the odds of litigation for outsourced projects

•• Shortens development schedules

•• Lowers development costs

•• Lowers maintenance costs

•• Reduces warranty costs

•• Increases customer satisfaction

This book contains seven chapters. The Introduction in Chapter 1 discusses
the fact that software has become one of the most widely used products in
human history. As this book is written, a majority of all business activities are
driven by software. A majority of government operations are controlled by
software, such as civilian taxes, military and defense systems, and both state
and local government organizations. Because software is so pervasive, high and
low quality levels affect every citizen in significant ways.

Chapter 1 defines software quality, considering the topic of quality is ambig-
uous both for software itself and for other manufactured products. There are
many diverse views of what “quality” actually means. Chapter 1 examines all
of the common views and concludes that effective definitions for quality need
to be predictable in advance and measurable when they occur. Because this
book deals with quantification and economic topics, there is emphasis on qual-
ity factors that can be measured precisely, such as defects and defect removal
efficiency. In addition to these well-defined metrics, we show how to precisely
measure software structural quality. Other definitions of quality, such as fitness,
use, or aesthetic factors, are important but not always relevant to economic
analysis.

Chapter 2 is about estimating and measuring software quality. It is impor-
tant for executives, clients, stakeholders, venture capitalists, and others with a
financial interest in software to understand how quality can be predicted
before projects start and measured during development and after release.
Because software quality involves requirements, architecture, design, and many

xxiv Preface

other noncode artifacts, the traditional lines of code metric is inadequate. This
book uses function point metrics and structural quality metrics for quantifying
quality. The function point metric is independent of code and therefore can
deal with noncoding defects such as “toxic requirements.” Structural quality
metrics get to the root causes of application quality and serve as foundational
measures of software costs and business risks.

Chapters 3 deals with the important topic of defect prevention. The set of
methods that reduce defect potentials and minimize errors are difficult to study
because they cannot be studied in isolation, but need numerous cases where a
specific method was used and similar cases where the method was not used.
Examples of methods that have demonstrated success in terms of defect preven-
tion include Six Sigma, quality function deployment (QFD), test-driven develop-
ment (TDD), and formal inspections. The kaizen and poka yoke inspections from
Japan are also defect prevention methods. Some of these, such as inspections,
happen to be effective as both defect prevention and defect removal methods.

Chapter 4 deals with pretest defect removal methods in use today. The term
“pretest” refers to quality and defect removal methods that occur prior to the
start of testing. Among these methods are peer reviews, formal inspections, and
static analysis. Although the literature on pretest defect removal is sparse com-
pared to the literature on testing, these methods are important and have great
value. Effective pretest methods such as inspections and static analysis shorten
test schedules and raise testing efficiency. Twenty-five different kinds of pretest
defect removal are discussed.

Chapter 5 deals with testing, which is the traditional quality control tech-
nique for software projects. Although there is an extensive literature on testing,
there is a surprising lack of quantified data on topics such as defect detection
efficiency (DDE) and defect removal efficiency (DRE). If testing is performed
without effective defect prevention methods and without pretest defect removal,
most forms of testing are usually less than 35% efficient in finding bugs and
quite expensive as well. A synergistic combination of defect prevention, pretest
removal, and formal well-planned testing can raise test removal efficiency sub-
stantially. The goal of effective quality control is to approach 99% in terms of
cumulative defect removal efficiency. Forty kinds of testing stages are discussed
in Chapter 5.

Chapter 6 deals with post-release defect removal, which is an unfortunate
fact of life for software applications. Cumulative defect removal efficiency in
the United States is only about 85%, so all software applications are delivered
with latent defects. As a result, customers will always find bugs, and software
organizations will always need customer support and maintenance personnel

xxvPreface

available to repair the bugs. However, state-of-the-art combinations of defect
prevention, pretest removal, and testing can top 96% in terms of defect removal
efficiency on average and even achieve 99% in a few cases.

Chapter 7 consolidates all of the authors’ data and shows side-by-side results
for low-quality, average-quality, and high-quality software projects. Both the
methods used to achieve high quality and the quantitative results of achieving
high quality are discussed.

Using structural quality data from 295 applications from 75 organizations
worldwide, we define and quantify the notion of technical debt—the cost of fix-
ing problems in working software that, if left unfixed, will likely cause severe
business disruption. We juxtapose this with a framework for quantifying the
loss of business value due to poor quality. Together with technical debt, this
business value framework provides a platform for future software economics
research.

This page intentionally left blank

xxvii

Acknowledgments

By Capers Jones
There are two authors for this book, and we each want to acknowledge those
who helped in its creation.

As always, thanks to my wife Eileen for her support of the many months of
time spent in writing 16 books over a 25-year period.

While this book was in process, two friends and colleagues passed away.
Special thanks should go to both Al Albrecht and Watts Humphrey.

Allan J. Albrecht was one of the original creators of function point metrics,
without which this book would not be possible. Al and I first met in 1978 when
he gave a talk on function points at the joint IBM/SHARE/GUIDE conference
in Monterey, California. Although we both worked for IBM, Al was located in
White Plains, New York, and I was located in San Jose, California, so we had
not met until the conference.

Al’s talk and the function point metric made economic analysis of software
feasible and provided insights that older metrics such as “lines of code” and
“cost per defect” could not replicate.

Al Albrecht, IBM, and the conference management kindly gave permission to
publish Al’s paper in my second book, Programming Productivity: Issues for
the Eighties through the IEEE Press in 1979. From this point on, all of my
technical books have used function points for quantitative information about
software quality, productivity, and economic topics.

After Al retired from IBM, we both worked together for about five years in
the area of expanding the usage of function point metrics. Al created the first
certification exam for function points and taught the metric to many of our
colleagues.

Al was an electrical engineer by training and envisioned function point
metrics as providing a firm basis for both quality and productivity studies for
all kinds of software applications. Today, in 2011, function points are the most
widely used software metric and almost the only metric that has substantial
volumes of benchmark information available.

About two weeks before Al Albrecht passed away, the software industry also
lost Watts Humphrey. Watts, too, was a colleague at IBM. Watts was an inven-
tor and a prolific writer of excellent books, as well as an excellent public
speaker and often keynoted software conferences.

xxviii Acknowledgments

After retiring from IBM, Watts started a second career at the Software
Engineering Institute (SEI) where he pioneered the development of the original
version of the capability maturity model (CMM).

Watts was one of the first software researchers to recognize that quality is
the driving force for effective software development methods. It would be
pointless to improve productivity unless quality improved faster and further
because otherwise higher productivity would only create more defects. At both
IBM and the SEI, Watts supported many quality initiatives, such as formal
inspections, formal testing, and complete defect measurements, from the start
of software projects through their whole useful lives.

Watts also created both the Personal Software Process (PSP) and the Team
Software Process (TSP), which are among the most effective methods for
combining high quality and high performance.

Watts’s work in software process improvement was recognized by his receipt
of the National Medal of Technology from President George Bush in 2005.

In recent years, Watts took part in a number of seminars and conferences, so
we were able to meet face-to-face several times a year, usually in cities where
software conferences were being held.

In this book, the importance of quality as being on the critical path to suc-
cessful software development is an idea that Watts long championed. And the
ability to measure quality, productivity, and other economic factors would not
be possible without the function point metric developed by Al Albrecht.

Many other people contributed to this book, but the pioneering work of Al
and Watts were the key factors that made the book possible.

By Olivier Bonsignour
First and foremost, I would like to thank Capers Jones. It has been a pleasure
working with him on this book.

I owe a debt to my colleagues Lev Lesokhin and Bill Curtis at CAST. Lev and
Bill were the first ones to suggest this project and have been exceptional sound-
ing boards throughout. Their imprint on the ideas, organization, and content is
so extensive that they should be considered coauthors of this book.

I’ve borrowed from the work of other colleagues at CAST. First of all, Jiten-
dra Subramanyam, who has done a tremendous job helping me elaborate the
content of this book. Also, my work with Bill Curtis and Vincent Delaroche—
on the distinction between software structural quality at the application level,
as opposed to quality at the component level—appears in Chapter 2. This
attribute of software quality—that the whole is greater than the sum of its
parts—is critical to the analysis and measurement of software quality. The defi-
nition of software structural quality metrics in that chapter is based on work I
did with Bill and with Vincent. The framework in Chapter 7 for calculating the

xxixAcknowledgments

business loss caused by poor structural quality is also based on Bill’s work. Jay
Sappidi did the groundbreaking work of collecting and analyzing our first batch
of structural quality data and crafting a definition of Technical Debt. Much of
the structural quality analysis in Chapters 6 and 7 is based on Jay’s work.

The product engineering team at CAST—Razak Ellafi, Philippe-Emmanuel
Douziech, and their fellow engineers—continue to create a magnificent product
that admirably serves the needs of hundreds of organizations worldwide. The
CAST Application Intelligence Platform is not only a piece of fine engineering,
it is also the generator of all the structural quality data in this book.

This page intentionally left blank

xxxi

About the Authors

Capers Jones is currently the President and CEO of
Capers Jones & Associates LLC. He is also the
founder and former chairman of Software Produc-
tivity Research LLC (SPR). He holds the title of
Chief Scientist Emeritus at SPR. Capers Jones
founded SPR in 1984.

Before founding SPR, Capers was Assistant
Director of Programming Technology for the ITT
Corporation at the Programming Technology
Center in Stratford, Connecticut. He was also a

manager and researcher at IBM in California.
Capers is a well-known author and international public speaker. Some of his

books have been translated into six languages. All of his books have been trans-
lated into Japanese, and his newest books are available in Chinese editions as well.

Among his book titles are Patterns of Software Systems Failure and Success
(Prentice Hall 1994), Applied Software Measurement, Third Edition (McGraw-
Hill, 2008), Software Quality: Analysis and Guidelines for Success (International
Thomson, 1997), Estimating Software Costs, Second Edition (McGraw-Hill,
2007), and Software Assessments, Benchmarks, and Best Practices
(Addison-Wesley, 2000). The third edition of his book Applied Software
Measurement was published in the spring of 2008. His book entitled Software
Engineering Best Practices was published by McGraw-Hill in October 2009.
His current book is The Economics of Software Quality, with Olivier
Bonsignour as coauthor.

Capers and his colleagues have collected historical data from more than 600
corporations and more than 30 government organizations. This historical data
is a key resource for judging the effectiveness of software process improvement
methods. More than 13,000 projects have been reviewed.

In addition to his technical books, Mr. Jones has also received recognition as
an historian after the publication of The History and Future of Narragansett
Bay in 2006 by Universal Publishers.

His research studies include quality estimation, quality measurement,
software cost and schedule estimation, software metrics, and risk analysis.

xxxii About the Authors

Mr. Jones has consulted at more than 150 large corporations and also at a
number of government organizations such as NASA, the U.S. Air Force, the
U.S. Navy, the Internal Revenue Service, and the U.S. Courts. He has also
worked with several state governments.

Olivier Bonsignour is responsible for Research &
Development and Product Management in a
continual effort to build the world’s most advanced
Application Intelligence technology.

Prior to joining CAST, Mr. Bonsignour was the
CIO for DGA, the advanced research division of the
French Ministry of Defense. Prior to that role, also
at DGA, he was in charge of application develop-
ment and a project director working on IT systems
that support operations. A pioneer in the develop-
ment of distributed systems and object oriented

development, he joined CAST after having been an early adopter of CAST tech-
nology in 1996.

Mr. Bonsignour holds a graduate degree in engineering and computer science
from the National Institute of Applied Sciences (INSA), Lyon, and a master’s
degree in management from the executive program at IAE Aix-en-Provence. In
his free time, Mr. Bonsignour enjoys swimming, cycling, and skiing, as well as
sailing his boat off the coast of France.

Chapter 1

Defining Software Quality
and Economic Value

Introduction

This book deals with two topics that have been ambiguous and difficult to pin
down for many years: software quality and economic value.

The reason for the ambiguity, as noted in the Preface, is that there are many
different points of view, and each point of view has a different interpretation of
the terms. For example, software quality does not mean the same thing to a
customer as it does to a developer. Economic value has a different meaning to
vendors than it has to consumers. For vendors, revenue is the key element of
value, and for consumers, operational factors represent primary value. Both of
these are discussed later in the book.

By examining a wide spectrum of views and extracting the essential points
from each view, the authors hope that workable definitions can be established
that are comparatively unambiguous.

Software quality, as covered in this book, goes well beyond functional qual­
ity (the sort of thing to which customers might react to in addition to usability
and reliable performance). Quality certainly covers these aspects but extends
further to nonfunctional quality (how well the software does what it is meant
to do) and to structural quality (how well it can continue to serve business
needs as they evolve and change as business conditions do).

Why Is Software Quality Important?

Computer usage in industrial countries starts at or before age 6, and by age
16 almost 60% of young people in the United States have at least a working

1

Chapter 1  Defining Software Quality and Economic Value2

knowledge of computers and software. Several skilled hackers have been appre­
hended who were only 16 years of age.

The approximate population of the United States in 2010 was about
309,800,135 based on Census Bureau estimates. Out of the total population
about 30% use computers daily either for business purposes or for recreational
purposes or both; that is, about 92,940,040 Americans are daily computer
users.

About 65% of the U.S. population use embedded software in the form of
smart phones, digital cameras, digital watches, automobile brakes and engine
controls, home appliances, and entertainment devices. Many people are not
aware that embedded software controls such devices, but it does. In other
words, about 201,370,087 U.S. citizens own and use devices that contain
embedded software.

Almost 100% of the U.S. population has personal data stored in various
online databases maintained by the Census Bureau, the Internal Revenue Ser­
vice, state governments, municipal governments, banks, insurance companies,
credit card companies, and credit scoring companies.

Moving on to business, data from various sources such as Forbes, Manta,
Business Week, the Department of Commerce Bureau of Labor Statistics, and
others reports that the United States has about 22,553,779 companies (as of the
end of 2010). Of these companies about 65% use computers and software for
business operations, retail sales, accounting, and other purposes—so about
14,659,956 U.S. companies use computers and software. (Corporate software
usage ranges from a basic spreadsheet up to entire enterprise resource planning
[ERP] packages plus hundreds of other applications.)

Based on data from the Manta website, the software deployed in the United
States is provided by about 77,186 software companies and another 10,000
U.S. companies that create devices with embedded software. A great deal of
embedded software and the device companies themselves have moved to China,
Taiwan, Japan, India, and other offshore countries. An exception to offshore
migration is the manufacture of embedded software for military equipment and
weapons systems, which tends to stay in the United States for security reasons.

The U.S. military services and the Department of Defense (DoD) own and
deploy more software than any other organizations in history. In fact, the DoD
probably owns and deploys more software than the military organizations of
all other countries combined. Our entire defense community is now dependent
on software for command and control, logistics support, and the actual opera­
tion of weapons systems. Our national defense systems are highly computer­
ized, so software quality is a critical component of the U.S. defense strategy.

Introduction 3

Without even knowing it, we are awash in a sea of software that operates
most of our manufacturing equipment, keeps records on virtually all citizens,
and operates the majority of our automobiles, home appliances, and
entertainment devices. Our transportation systems, medical systems, and
government operations all depend on computers and software and hence also
depend on high software quality levels.

While software is among the most widely used products in human history, it
also has one of the highest failure rates of any product in human history due
primarily to poor quality.

Based on observations among the authors’ clients plus observations during
expert witness assignments, the cancellation rate for applications in the 10,000
function point size range is about 31%. The average cost for these cancelled
projects is about $35,000,000. By contrast, projects in the 10,000 function
point size range that are successfully completed and have high quality levels
only cost about $20,000,000.

When projects developed by outsource vendors are cancelled and clients sue
for breach of contract, the average cost of litigation is about $5,000,000 for the
plaintiff and $7,000,000 for the defendant. If the defendants lose, then awards
for damages can top $25,000,000. However because most U.S. courts bar suits
for consequential damages, the actual losses by the defendants can be much
larger.

Of the authors’ clients who are involved with outsourcing, about 5% of
agreements tend to end up in court for breach of contract. The claims by
the plaintiffs include outright failure, delivery of inoperable software, or deliv­
ery of software with such high defect volumes that usage is harmful rather than
useful.

As of 2011, the average cost per function point in the United States is about
$1,000 to build software applications and another $1,000 to maintain and
support them for five years: $2,000 per function point in total. For projects that
use effective combinations of defect prevention and defect removal activities
and achieve high quality levels, average development costs are only about $700
per function point and maintenance, and support costs drop to about $500 per
function point: $1,200 per function point in total.

Expressed another way, the software engineering population of the United
States is currently around 2,400,000 when software engineers and related
occupations such as systems analysis are considered. On any given day, due
to poor quality control, about 1,000,000 of these workers spend the day
finding and fixing bugs (and, unwittingly, injecting new bugs as part of the
process).

Chapter 1  Defining Software Quality and Economic Value4

So all of these statistics point to the fact that better software quality control
in the forms of defect prevention and more effective defect removal could free
up about 720,000 software personnel for more productive work than just bug
repairs, easily reducing U.S. software development and maintenance costs by
about 50%.

As we show later in the book, the cost savings that result from higher quality
are proportional to application size. As software projects grow larger, cost
savings from high quality levels increase. Table 1.1 illustrates typical software
development costs for low-, average-, and high-quality software applications.

The technologies and methods associated with these three quality levels are
discussed and illustrated in later sections of this chapter, as are the reasons that
large software projects are so risky. Suffice it to say the “high quality” column
includes effective defect prevention, effective pretest defect removal such as
inspections and static analysis, and much more effective testing than the other
columns.

Another major reason that software quality is important is because poor
quality can and will affect each citizen personally in unpleasant ways. Every time
there is a billing error, every time taxes are miscalculated, every time credit rat­
ings change for incorrect reasons, poor software quality is part of the problem.

Early in 2010, hundreds of computers were shut down and many businesses
including hospitals were disrupted when the MacAfee antivirus application mis­
takenly identified part of Microsoft Windows as a virus and stopped it from
loading.

According to the July 25, 2010, issue of Computerworld, the BP drilling
platform that exploded and sank had been having frequent and serious com­
puter problems for a month prior to the final disaster. These problems prevented
significant quantities of data from being analyzed that might have warned oper­
ators in time to shut down the oil pumping operation.

Table 1.1  Software Costs by Size and Quality Level

	 (Burdened cost = $10,000 per month)

Function Points	 Low Quality	 Average Quality	 High Quality

	 10	 $6,875	 $6,250	 $5,938

	 100	 $88,561	 $78,721	 $74,785

	 1,000	 $1,039,889	 $920,256	 $846,636

	 10,000	 $23,925,127	 $23,804,458	 $18,724,012

	 100,000	 $507,767,782	 $433,989,557	 $381,910,810

Introduction 5

If your automobile braking system does not operate correctly, if a home
appliance fails unexpectedly, or if a hospital makes a medical mistake, there is a
good chance that poor software quality was part of the problem.

If an airline flight is delayed more than about two hours or if there is a
widespread power outage that affects an entire geographic region such as New
England, the odds, again, are good that poor software quality was part of the
problem.

Because software is such a basic commodity as of 2011, it is useful to start
by considering how much software ordinary U.S. citizens own and use.
Table 1.2 shows typical software volumes associated with normal living
activities.

The data in Table 1.2 comes from a combination of web sources and propri­
etary data provided by clients who build appliances of various kinds.

Not every citizen has all of these appliances and devices, but about half of us
do. Many of us have even more than what Table 1.2 indicates, such as owning
several automobiles, several cell phones, and numerous appliances. Software
quality is important because it is the main operating component of almost all
complex machines as of 2011.

Another reason that software quality is important is because many of us
need high-quality software to go about our daily jobs. Table 1.3 shows typical
software usage patterns for a sample of positions that include knowledge work,
based on observations and discussions with members of various professions
and from studies with the companies that provide the software.

Table 1.2  Personal Software Circa 2011

Products	 Function Points	 Lines of Code	 Daily Usage Hours

Personal computer	 1,000,000	 50,000,000	 2.00

Automobile	 350,000	 17,500,000	 2.00

Smart appliances	 100,000	 5,000,000	 1.00

Smart phone	 25,000	 1,250,000	 1.50

Social networks	 25,000	 1,250,000	 1.50

Home entertainment	 10,000	 500,000	 2.00

Electronic book	 5,000	 250,000	 1.00

Digital camera	 2,500	 125,000	 0.50

Digital watch	 1,500	 75,000	 0.50

TOTALS	 1,519,000	 75,950,000	 12.00

Chapter 1  Defining Software Quality and Economic Value6

As can be seen from Table 1.3, all knowledge workers in the modern world
are heavily dependent on computers and software to perform their jobs. There­
fore, these same workers are heavily dependent on high software quality levels.
Every time there is a computer failure or a software failure, many knowledge
workers will have to stop their jobs until repairs are made. Indeed, power fail­
ures can stop work in today’s world.

One of the authors was once an expert witness in a software breach-of-
contract lawsuit. While being deposed in Boston there was a power failure, and
the court stenographer could not record the transcript. As a result, four attor­
neys, the stenographer, and two expert witnesses spent about two hours waiting
until the deposition could continue. All of us were being paid our regular rates
during the outage. We are so dependent on computers and software that work
stops cold when the equipment is unavailable.

Table 1.3  Occupation Group Software Usage Circa 2011

	 Function	 Lines of	 Daily Usage	 Packages
Occupation Groups	 Points	 Code	 Hours	 Used

Military planners	 5,000,000	 295,000,000	 6.50	 30

Physicians	 3,000,000	 177,000,000	 3.00	 20

FBI agents	 1,500,000	 88,500,000	 3.50	 15

Military officers	 775,000	 45,725,000	 3.50	 20

Attorneys	 350,000	 20,650,000	 4.00	 10

Airline pilots	 350,000	 20,650,000	 7.00	 15

Air-traffic controllers	 325,000	 19,175,000	 8.50	 3

IRS tax agents	 175,000	 10,325,000	 5.00	 10

Accountants	 175,000	 10,325,000	 5.00	 12

Pharmacists	 150,000	 8,850,000	 4.00	 6

Electrical engineers	 100,000	 5,900,000	 5.50	 20

Software engineers	 75,000	 4,425,000	 7.00	 20

Civil engineers	 65,000	 3,835,000	 5.00	 6

Police detectives	 60,000	 3,540,000	 3.50	 12

Project managers	 50,000	 2,950,000	 2.00	 7

Real estate agents	 30,000	 1,770,000	 4.00	 7

Bank tellers	 25,000	 1,475,000	 6.00	 8

School teachers	 15,000	 885,000	 1.50	 4

Retail clerks	 15,000	 885,000	 7.00	 5

AVERAGES	 643,947	 37,992,895	 4.82	 12

Introduction 7

Similar occurrences take place after hurricanes and natural disasters that
shut down power. Many retail establishments are unable to record sales infor­
mation, and some stay closed even though workers and potential customers are
both available. If computers and software are out of service, many businesses
can no longer operate.

Software and computers are so deeply enmeshed in modern business and
government operations that the global economy is at serious risk. As military
planners know, nuclear explosions in the atmosphere emit an electromagnetic
pulse (EMP) that damages transistors and electrical circuits. They can also
cause explosions of liquid fuels such as gasoline and can detonate stored
weapons.

Such “ebombs” can be designed and detonated high enough so that they
don’t cause injuries or death to people, but instead cause major destruction of
electronic devices such as radar, electric power generation, television, comput­
ers, and the like.

As of 2011, it is thought that most major countries already have ebombs
in their arsenals. CBS news reported that one or more ebombs shut down
the electric capacity of Baghdad without doing physical damage to buildings
or personnel during the second Iraq war. This could be one of the rea­
sons why restoring power to Baghdad after the hostilities ended has been so
difficult.

A final reason that software quality is important is because dozens of gov­
ernment agencies and thousands of companies have personal information about
us stored in their computers. Therefore, both quality and security are critical
topics in 2011.

Table 1.4 shows examples of the kinds of organizations that record personal
information and the probable number of people who work in those organiza­
tions who might have access to data about our finances, our Social Security
numbers, our health-care records, our dates of birth, our jobs, our families, our
incomes, and many other personal topics.

Given the number of government agencies and corporations that record vital
data about citizens, and the number of people who have access to that data, it is
no wonder that identity theft is likely to hit about 15% of U.S. citizens within
the next five years.

A Congressional report showed that the number of U.S. cyber attacks
increased from about 43,000 in 2008 to more than 80,000 in 2009. As this
book is being written, probably more than 10,000 U.S. hackers are actively
engaged in attempting to steal credit card and financial information. Computers,
networks, and smart phones are all at considerable risk. Security vulnerabilities
are linked closely to poor quality, and many attacks are based on known
quality flaws.

Chapter 1  Defining Software Quality and Economic Value8

Table 1.4  Estimated Applications with Personal Data

	 Function	 Lines of	 Personnel	 Packages
Organizations	 Points	 Code	 with Access	 Used

Internal Revenue Service	 150,000	 7,500,000	 10,000	 10

Banks	 125,000	 6,250,000	 90,000	 12

Insurance companies	 125,000	 6,250,000	 75,000	 15

Credit card companies	 125,000	 6,250,000	 3,000	 10

Credit bureaus	 120,000	 6,000,000	 1,500	 9

Census Bureau	 100,000	 5,000,000	 1,000	 5

State tax boards	 90,000	 4,500,000	 200	 5

Airlines	 75,000	 3,750,000	 250	 12

Police organizations	 75,000	 3,750,000	 10,000	 5

Hospitals	 75,000	 3,750,000	 1,000	 5

Web-based stores	 75,000	 3,750,000	 1,500	 12

Municipal tax boards	 50,000	 2,500,000	 20	 3

Motor vehicle department	 50,000	 2,500,000	 200	 3

Physicians offices	 30,000	 1,500,000	 50	 6

Dental offices	 30,000	 1,500,000	 50	 6

Schools/universities	 25,000	 1,250,000	 125	 8

Clubs and associations	 20,000	 1,000,000	 250	 3

Retail stores	 20,000	 1,000,000	 100	 4

TOTALS	 1,360,000	 68,000,000	 194,245	 133

Because computers and software are now the main tools that operate indus­
try and government, software quality and software security are among the most
important topics of the modern world. Indeed, the importance of both quality
and security will increase over the next decade.

From an economic standpoint, higher software quality levels can shorten
development schedules, lower development and maintenance costs, improve
customer satisfaction, improve team morale, and improve the status of the soft­
ware engineering profession all at the same time.

Defining Software Quality

Quality has always been a difficult topic to define, and software quality has
been exceptionally difficult. The reason is that perceptions of quality vary from
person to person and from object to object.

9Defining Software Quality

For software quality for a specific application, the perceptions of quality
differ among clients, developers, users, managers, software quality personnel,
testers, senior executives, and other stakeholders. The perceptions of quality
also differ among quality consultants, academics, and litigation attorneys.
Many definitions have been suggested over the years, but none have been totally
satisfactory or totally adopted by the software industry, including those embod­
ied in international standards.

The reason that quality in general and software quality in particular have
been elusive and hard to pin down is because the word “quality” has many
nuances and overtones. For example, among the attributes of quality can be
found these ten:

1.	Elegance or beauty in the eye of the beholder

2.	Fitness of use for various purposes

3.	Satisfaction of user requirements, both explicit and implicit

4.	Freedom from defects, perhaps to Six Sigma levels

5.	High efficiency of defect removal activities

6.	High reliability when operating

7.	Ease of learning and ease of use

8.	Clarity of user guides and HELP materials

9.	Ease of access to customer support

10.	Rapid repairs of reported defects

To further complicate the definition, quality often depends on the context in
which a software component or feature operates. The quality of a software
component is not an intrinsic property—the exact same component can be of
excellent quality or highly dangerous depending on the environment in which it
operates or the intent of the user.

This contextual nature of software quality is a fundamental challenge and
applies to each of the ten attributes just listed. What is elegant in one situation
might be downright unworkable in another; what is highly reliable under cer­
tain conditions can quickly break down in others.

A closely related complication is what Brooks calls “changeability” of soft­
ware. “In short, the software product is embedded in a cultural matrix of appli­
cations, users, laws, and machine vehicles. These all change continually, and
their changes force change upon the software product.” (Brooks 1995, p.185)

Chapter 1  Defining Software Quality and Economic Value10

This brings us to the distinction between testing and software quality.
Software quality is often loosely equated with the activities of testing or quality
assurance. However, contextuality and Brooks’ notion of changeability of soft­
ware are the reasons why software quality cannot be equated with testing or
quality assurance.

Testing can only tackle known unknowns. If you don’t know what you’re
testing for, you are not, by definition, conducting tests. But software, by its very
nature is subject to unknown unknowns. No amount of functional or nonfunc­
tional testing can be designed to detect and correct these problems. For example,
the behavior of the application can change when

•• One or more application components are switched out for new components

•• Components change for technology reasons (such as version upgrades)

•• Components change for business reasons (such as for new features or a
change in workflow)

•• Or the application’s environment (perhaps the technology stack, for
example) changes

It is impossible to devise tests for these conditions in advance. However, from
experience we know that some applications are more robust, reliable, and
dependable than others when the environment around them changes. Some
applications are much easier to modify or extend in response to pressing busi­
ness needs. These attributes of an application—robustness, dependability, modi­
fiability, and so on—are reliable indicators of application quality that go beyond
the defects identified during testing or the process inefficiencies or compliance
lapses indentified in quality assurance. Therefore, the quality of an application
can and must be defined in such a way as to accommodate these indicators of
quality that outrun those identified in testing and quality assurance. How the
concepts of contextuality and changeability can be accounted for in defining
and measuring software quality is addressed at length in Chapter 2.

There are seven criteria that should be applied to definitions of software
quality in order to use the definition in a business environment for economic
analysis:

1.	The quality definition should be predictable before projects start.

2.	The quality definition should be measurable during and after projects
are finished.

3.	The quality definition should be provable if litigation occurs.

11Defining Software Quality

4.	The quality definition should be improvable over time.

5.	The quality definition should be flexible and encompass all deliverables.

6.	The quality definition should be extensible and cover all phases and activities.

7.	The quality definition should be expandable to meet new technologies
such as cloud computing.

In addition, the various nuances of quality can be categorized into seven
major focus areas or quality types:

1.	Technical or Structural quality, which includes reliability, defects, and
defect repairs

2.	Process quality, which includes development methods that elevate quality

3.	Usage quality, which includes ease of use and ease of learning

4.	Service quality, which includes access to support personnel

5.	Aesthetic quality, which includes user satisfaction and subjective topics

6.	Standards quality, which includes factors from various international
standards

7.	Legal quality, which includes claims made in lawsuits for poor quality

The reason that taxonomy of quality types is needed is because the full set of
all possible quality attributes encompasses more than 100 different topics.
Table 1.5 lists a total of 121 software quality attributes and ranks them in order
of importance.

The ranking scheme ranges from +10 for topics that have proven to be
extremely valuable to a low of −10 for topics that have demonstrated extreme
harm to software projects.

Table 1.5  Seven Types of Software Quality Factors

	 Quality Factors	 Value

	 Technical Quality Factors	

1	 Few requirements defects	 10.00

2	 No toxic requirements	 10.00

3	 Zero error-prone modules	 10.00

(Continued)

Chapter 1  Defining Software Quality and Economic Value12

Table 1.5  (Continued)

	 Quality Factors	 Value

	 Technical Quality Factors	

4	 Low defect potentials	 10.00

5	 Use of certified reusable code	 10.00

6	 Low rates of severity 1 and 2 defects	 10.00

7	 High reliability	 9.90

8	 Strong security features	 9.90

9	 Few design defects	 9.50

10	 Few coding defects	 9.50

11	 Low bad-fix injection rate	 9.50

12	 Low rates of invalid defect reports	 9.50

13	 Low rates of legacy defects	 9.50

14	 Easy conversion to SaaS format	 9.00

15	 Easy conversion to Cloud format	 9.00

16	 Fault tolerance	 8.00

17	 Few defects in test cases	 8.00

18	 Low cyclomatic complexity	 7.50

19	 Low entropy	 7.00

	 Process Quality Factors	

20	 Customer support of high quality	 10.00

21	 High defect detection efficiency (DDE)	 10.00

22	 High defect removal efficiency (DRE)	 10.00

23	 Accurate defect measurements	 10.00

24	 Use of formal defect tracking	 10.00

25	 Accurate defect estimates	 10.00

26	 Low total cost of ownership (TCO)	 10.00

27	 Executive support of quality	 10.00

28	 Team support of quality	 10.00

29	 Management support of quality	 10.00

30	 Accurate quality benchmarks	 10.00

31	 Effective quality metrics	 10.00

32	 Minimizing hazards of poor quality	 10.00

33	 Use of formal quality improvement plan	 10.00

34	 COQ: appraisal	 10.00

13Defining Software Quality

	 Quality Factors	 Value

	 Process Quality Factors	

35	 COQ: prevention	 10.00

36	 COQ: internal failure	 10.00

37	 COQ: external failure	 10.00

38	 Cost of learning (COL)	 10.00

39	 Quality improvement baselines	 9.90

40	 Function point quality measures	 9.80

41	 Quality and schedules	 9.00

42	 Quality and costs	 9.00

43	 Use of formal inspections	 9.00

44	 Use of automated static analysis	 9.00

45	 Use of formal test case design	 9.00

46	 Use of reusable test data	 9.00

47	 Use of formal SQA team	 9.00

48	 Use of trained test personnel	 9.00

49	 Use of formal test library controls	 9.00

50	 Use of formal change management	 9.00

51	 Use of Six Sigma for software	 9.00

52	 Use of Team Software Process (TSP)	 9.00

53	 Use of Agile methods	 9.00

54	 Use of Rational methods (RUP)	 9.00

55	 Use of hybrid methods	 9.00

56	 Use of Quality Function Deployment (QFD)	 9.00

57	 Use of trained inspection teams	 9.00

58	 Use of CMMI levels = > 3	 9.00

59	 Use of legacy renovation tools	 9.00

60	 Low rates of false-positive defects	 9.00

61	 Low rates of duplicate defect reports	 8.75

62	 Use of refactoring and restructuring	 8.50

63	 Six-Sigma quality measures	 8.50

64	 High test coverage	 8.00

65	 Low Cost of Quality (COQ)	 8.00

66	 Use of automated test tools	 8.00

(Continued)

Chapter 1  Defining Software Quality and Economic Value14

Table 1.5  (Continued)

	 Quality Factors	 Value

	 Process Quality Factors	

67	 Use of story point quality metrics	 2.00

68	 Use of Use Case point quality metrics	 2.00

69	 Use of waterfall methods	 1.00

70	 Lines of code quality measures	 −5.00

71	 Use of CMMI levels = < 2	 −5.00

72	 Cost-per-defect quality measures	 −7.00

73	 Executive indifference to high quality	 −10.00

74	 Management indifference to high quality	 −10.00

75	 Team indifference to high quality	 −10.00

76	 Customer indifference to high quality	 −10.00

	 Usage Quality Factors	

77	 Ease of use	 10.00

78	 Useful features	 10.00

79	 Ease of learning	 10.00

80	 Good tutorial manuals	 10.00

81	 Good training courses	 10.00

82	 Good on-line HELP	 10.00

83	 Useful HELP information	 9.75

84	 Defect repair costs	 9.25

85	 Low cost of learning (COL)	 9.25

86	 User error handling	 9.00

87	 Speed of loading	 9.00

88	 Speed of usage	 9.00

89	 Good nationalization for global products	 9.00

90	 Documentation defects	 9.00

91	 Easy export of data to other software	 9.00

92	 Easy import of data from other software	 9.00

93	 Useful manuals and training	 8.50

94	 Good assistance from live experts	

	 Service Quality Factors	

95	 Good customer service	 9.50

96	 Rapid defect repair speed	 9.25

97	 Good technical support	 9.00

15Defining Software Quality

	 Quality Factors	 Value

	 Service Quality Factors	

98	 Good HELP desk support	 9.00

99	 Use of formal incident management	 8.00

100	 Use of ITIL policies	 8.00

	 Aesthetic Quality Factors	

101	 High user satisfaction	 10.00

102	 Superior to competitive applications	 10.00

103	 Superior to legacy applications	 10.00

104	 Quick start-up and shut-down times	 9.00

105	 No feature bloat	 7.00

	 Standards Quality Factors	

106	 ISO/IEEE standards compliance	 10.00

107	 Certification of reusable materials	 10.00

108	 Corporation standards compliance	 10.00

109	 Certification of test personnel	 8.00

110	 Certification of SQA personnel	 8.00

111	 Portability	 7.00

112	 Maintainability	 6.00

113	 Scalability	 5.00

	 Legal Quality Factors	

114	 Good warranty	 10.00

115	 Partial warranty: replacement only	 4.00

116	 Litigation for poor quality—consequential	 −10.00

117	 Litigation for poor quality—contractual	 −10.00

118	 Litigation for poor quality—financial loss	 −10.00

119	 Litigation for poor quality—safety	 −10.00

120	 Litigation for poor quality—medical	 −10.00

121	 No warranty expressed or implied	 −10.00

A total of 121 quality factors is far too cumbersome to be useful for day-to-
day quality analysis. Table 1.6 lists the top 12 quality factors if you select only
the most significant factors in achieving quality based on measurements of sev­
eral thousand applications.

As of 2011, 11 of these 12 quality factors are technically achievable. Item
114 on the list, Good warranty, is not yet practiced by the software industry.
This situation needs to change, and the software industry needs to stand behind
software applications with effective warranty coverage.

Chapter 1  Defining Software Quality and Economic Value16

Table 1.6  The 12 Most Effective Software Quality Factors

1.	 Low defect potentials

2.	 Effective defect prevention methods

3.	 High defect detection efficiency (DDE)

4.	 High defect removal efficiency (DRE)

5.	 Use of pretest inspections

6.	 Use of pretest static analysis

7.	 Use of formal test case design

8.	 Good ease of learning

9.	 Good ease of use

10.	 Good technical support

11.	 High user satisfaction

12.	 Good warranty

Though all 121 of the quality factors are important, in order to deal with the
economic value of quality, it is obvious that the factors have to be capable of
quantitative expression. It is also obvious that the factors have to influence
these seven topics:

1.	The costs of development, maintenance, enhancement, and support.

2.	The schedules for development, maintenance, enhancement, and support.

3.	The direct revenue that the application will accrue if it is marketed.

4.	The indirect revenue that might accrue from services or related products.

5.	The learning curve for users of the application.

6.	The operational cost savings that the application will provide to users.

7.	The new kinds of business opportunities that the application will pro­
vide to users.

This book concentrates on software quality factors that have a tangible
impact on costs and revenue. And to deal with the economic value of these
quality factors, the book addresses three critical topics:

•• What are the results of “average quality” in terms of costs, schedules, rev­
enue, and other financial topics? Once defined, average quality will pro­
vide the baseline against which economic value can be measured.

17Defining Economic Value and Defining the Value of Software Quality

•• What are the results of “high quality” in terms of cost reduction, schedule
reduction, higher revenues, new market opportunities, and other financial
topics?

•• What are the consequences of “low quality” in terms of cost increases,
schedule increases, reduced revenue, loss of customers, and other financial
topics?

Usually, more insights result from polar opposites than from average values.
Therefore the book concentrates on the economic value from high quality and
the economic losses from low quality.

While average quality is important, it is not very good, nor has it ever been
very good for software. Therefore, it is important to know that only better-
than-average software quality has tangible economic values associated with it.

Conversely, low software quality brings with it some serious economic con­
sequences, including the threat of class-action litigation, the threat of breach of
contract litigation, and, for embedded software in medical devices, even the
potential threat of criminal charges.

Defining Economic Value and Defining the Value
of Software Quality

Not only is “quality” an ambiguous term because of multiple viewpoints, but
the term “value” is also ambiguous for the same reason. Indeed the concept of
economic value has been a difficult one for every industry and for all forms of
economic theory for more than 150 years.

Some economic theories link value to cost of production and to the price of
various commodities. Other economic theories link value to usage of the same
commodities. John Ruskin even assigned a moral element to value that dealt
with whether wealth or various commodities were used for beneficial or harm­
ful purposes. All of these theoretical economic views about value are interesting
but somewhat outside the scope of this book.

For software, the perception of economic value can vary between enterprises
that produce software and enterprises that consume or use software. These two
views correspond to classic economic theories that assign value based on either
production or on usage—both are discussed.

But software has another view of value that is not dealt with very often in
standard economic theories. In modern businesses and governments, the people
who pay for internal software application development are neither the produc­
ers nor the consumers.

Chapter 1  Defining Software Quality and Economic Value18

Many software projects are commissioned and funded by executives or
senior managers who will probably never actually use the software itself. These
senior executives have a perception of value that needs to be considered—at the
executive level, value of software can be delineated in a few different ways:

1.	 Software that can lower current operational costs

2.	 Software that can increase revenue by selling more current products

3.	 Software that can increase revenue by creating innovative new lines of
business or by producing novel new products

For the first 20 years of the software industry between about 1950 and 1970,
operating cost reduction was the primary economic reason for building soft­
ware applications. Many clerical and paper-pushing jobs were converted from
manual labor to computers.

From about 1970 to 1990, computers and software started to be aimed at
improving manufacturing and marketing capabilities so that companies could
build and sell more of their current products. Robotic manufacturing and
sophisticated customer support and inventory management systems made sig­
nificant changes in industrial production, marketing, and sales methodologies.

From about 1990 through today, computers and software have been rapidly
creating new kinds of businesses that never existed before in all of human his­
tory. Consider the products and business models that are now based on the
Internet and the World Wide Web.

Modern companies such as Amazon, Google, and eBay are doing forms of
business that could not be done at all without software and the Web. At a lower
level, computer gaming is now a multi-billion dollar industry that is selling
immersive 3D products that could not exist without software. In other words,
the third dimension of economic value is “innovation” and the creation of
entirely new kinds of products and new business models.

In sum, when considering the economics of software and also of software
quality, we need to balance three distinct threads of analysis:

1.	Operating cost reductions

2.	Revenue from increasing market share of current products or services

3.	Revenue from inventing entirely new kinds of products and services

To come to grips with both the value of software itself and economic value
of software quality, it is useful to explore a sample of these disparate views,

19

including both the value of high quality levels and the economic harm from
poor quality levels. In Chapter 7 we present quantitative frameworks for meas­
uring the operating costs and the business impact of software quality.

The Economic Value of Software and Quality to Enterprises
That Build Internal Software for Their Own Use

Building software internally for corporate or government operations was the
first application for computers in a business setting. The reason this was the
first response is because there were no other alternatives in the late 1950s and
early 1960s due to the lack of other sources for software.

In the 1960s when computers first began to be widely used for business pur­
poses, there were few COTS companies and no enterprise-resource planning
companies (ERP) at all. The outsource business was in its infancy, and offshore
outsourcing was almost 20 years in the future. The initial use of computers was
to replace labor-intensive paper operations with faster computerized applica­
tions. For example, insurance claims handling, accounting, billing, taxation,
and inventory management were all early examples of computerization of busi­
ness operations.

The software for these business applications were built by the companies or
government groups that needed them. This began an interesting new economic
phenomenon of large companies accumulating large software staffs for building
custom software even though software had nothing to do with their primary
business operations.

By the 1990s, many banks, insurance companies, and manufacturing compa­
nies had as many as 10% of their total employment engaged in the develop­
ment, maintenance, and support of custom internal software.

The same phenomenon occurred for the federal government, for all 50 of the
state governments, and for about the 125 largest municipal governments.

In 2011, the 1,000 largest U.S. companies employed more than 1,000,000
software engineers and other software occupations. Some of these companies
are very sophisticated and build software well, but many are not sophisticated
and have major problems with cost overruns, schedule slippage, and outright
cancellation of critical software projects.

The same statement is true of government software development. Some agen­
cies are capable and build software well. But many are not capable and experi­
ence cancellations, overruns, and poor quality after deployment.

Examples of enterprises that build their own custom software include Aetna,
Citizens, Proctor and Gamble, Ford and General Motors, Exxon Oil, the fed­
eral government, the state of California, the city of New York, and thousands
of others.

Defining Economic Value and Defining the Value of Software Quality

Chapter 1  Defining Software Quality and Economic Value20

Most internal software development groups operate as cost centers and are
not expected to be profitable. However, they may charge other operating units
for their services. Some software groups are funded by corporations as overhead
functions, in which case they work for free. Very few operate as profit centers
and sell their services to other companies as well as to internal business units.

Between about 1965 and 1985 these internal development groups were
building applications for two main purposes:

1.	To reduce operational costs by automating labor-intensive manual
activities

2.	To allow companies to offer new and improved services to customers

By the end of the last century and continuing through 2011, the work patterns
have shifted. About 75% of “new” applications in 2011 were replacements for
aging legacy applications built more than 15 years ago. These aging legacy appli­
cations require so much work to keep them running and up to date that more
than 50% of internal software staffs now work on modifying existing software.

And, of course, the software personnel spend a high percentage of every
working day finding and fixing bugs.

Since the early 1990s outsource vendors, COTS vendors, and open source
vendors have entered the picture. As a result, the roles of internal software
groups are evolving. Due to the recession of 2008 through 2010, many internal
software groups have been downsized, and many others are being transferred to
outsourcing companies.

As of 2011 only about 20% of the work of internal software groups involves
innovation and new forms of software. The new forms of innovative software
center on web applications, cloud computing, and business intelligence. How­
ever, numerous software projects are still being built by internal software groups
even if the majority of these “new” projects are replacements or consolidations
of aging legacy applications.

The economic value of software quality for internal software projects centers
on these topics:

•• Reduced cancellation rates for large applications

•• Earlier delivery dates for new applications

•• Reduced resistance from operating units for accepting new software

•• Faster learning curves for bringing users up to speed for new software

•• More and better services and products for clients

21

•• Reduced development costs for new applications

•• Reduced maintenance costs for released applications

•• Reduced customer support costs for released applications

•• Reduced executive dissatisfaction with the IT function

The economic consequences of low quality for in-house development include

•• Protracted delays in delivering new applications

•• Major cost overruns for new applications

•• High probability of outright cancellation for large new applications

•• Damages to business operations from poor quality

•• Damages to customer records from poor quality

•• Executive outrage over poor performance of IT group

•• High odds of replacing in-house development with outsourcing

•• Long learning curves for new applications due to poor quality

•• Poor customer satisfaction

•• High maintenance costs due to poor quality

•• High customer support costs due to poor quality

The internal software development community does not do a very good job on
software quality compared to the embedded software community, the systems
software community, the defense software community, or even the commer­
cial software community. One of the reasons why many companies are moving
to outsource vendors is because internal software quality has not been effective.

Among the gaps in software quality control for the internal software com­
munity can be found poor quality measurements, failure to use effective defect
prevention techniques, failure to use pretest inspections and static analysis
tools, and failure to have adequately staffed Software Quality Assurance (SQA)
teams. In general, the internal software community tests software applications
but does not perform other necessary quality activities.

Poor quality control tends to increase executive dissatisfaction with the IT
community, lower user satisfaction, and raise the odds that enterprises will
want to shift to outsourcing vendors.

Defining Economic Value and Defining the Value of Software Quality

Chapter 1  Defining Software Quality and Economic Value22

The Economic Value of Software and Quality to Internal
Software Users

As of mid-2010 the Bureau of Labor Statistics reported that employment for
the United States is about 139,000,000. (Unfortunately, this number is down
about 7,000,000 from the 2007 peak before the “Great Recession” when U.S.
employment topped 146,000,000.)

Of these U.S. workers, about 20% are daily software and computer users,
roughly 27,800,000. Some of these people who work for small companies use
only a few commercial software packages such as spreadsheets and word proc­
essors. However, about 40% of these workers are employed by either compa­
nies or government agencies that are large enough to build internal software. In
other words, there are about 11,120,000 workers who use internally developed
software applications as part of their daily jobs.

Note that these users of computers and software are not “customers” in the
sense that they personally pay for the software that they use. The software is
provided by corporations and government agencies so that the workers can
carry out their daily jobs.

Examples of common kinds of internal software used by companies circa
2011 include retail sales, order entry, accounts payable and receivable, airline
and train reservations, hotel reservations, insurance claims handling, vehicle
fleet control, automobile renting and leasing, shipping, and cruise line book­
ings. Other examples include hospital administration, Medicare and Medicaid,
and software used by the Internal Revenue Service (IRS) for taxation.

In today’s world, internal development of software is primarily focused on
applications that are specific to a certain business and hence not available from
COTS vendors. Of course, the large enterprise-resource planning (ERP) compa­
nies such as SAP, Oracle, PeopleSoft, and the like have attempted to reduce the
need for in-house development. Even the most complete ERP implementations
still cover less than 50% of corporate software uses.

In the future, Software as a Service (SaaS), Service-oriented Architecture
(SOA), and cloud computing will no doubt displace many in-house applications
with equivalent Web-based services, but that time is still in the future.

The economic value of high-quality internal software to users and stakehold­
ers has these factors:

•• Reduction in cancelled projects

•• Reduction in schedule delays

•• Reduction in cost overruns

23

•• Reduction in user resistance to new applications

•• Rapid deployment of new applications

•• Short learning curves to get up to speed in new applications

•• Higher user satisfaction

•• Higher reliability

•• Better and more reliable customer service

•• Reduced maintenance costs for released applications

•• Reduced customer support costs for released applications

The economic consequences of low quality for internal users and stakeholders
include

•• Risk of cancelled projects

•• Schedule delays for large applications

•• Cost overruns for large applications

•• Business transaction errors that damage customers or clients

•• Business transaction errors that damage financial data

•• Possible class-action litigation from disgruntled customers

•• Possible litigation from customers suffering business losses

•• Possible litigation from shareholders about poor quality

•• Protracted delays in delivering new services

•• Poor customer satisfaction

•• High maintenance costs due to poor quality

•• High customer support costs due to poor quality

For more than 50 years, internal software has been a mainstay of many corpo­
rations. However, due in large part to poor quality levels, a number of corpora­
tions and some government agencies are re-evaluating the costs and value of
internal development. Outsourcing is increasing, and international outsourcing
is increasing even more quickly.

Defining Economic Value and Defining the Value of Software Quality

Chapter 1  Defining Software Quality and Economic Value24

Process improvements are also popular among internal software development
groups. These range from being moderately successful to being extremely suc­
cessful. As is discussed throughout this book, success tends to correlate with
improved quality levels.

The Economic Value of Software and Quality to Commercial
Software Vendors

Because there are now thousands of commercial software companies and many
thousands of commercial software applications, it is interesting to realize that
this entire multibillion dollar industry is younger than many readers of this
book.

The commercial software business is a by-product of the development of
electronic computers and only began to emerge in the 1960s. Word processing
only entered the commercial market in about 1969 as an evolution of electric
typewriters augmented by storage for repetitive text such as forms and ques­
tionnaires.

Spreadsheets first became commercial products circa 1978 with VisiCalc,
although there were earlier implementations of computerized spreadsheets by
IBM and other computer and software companies.

A spreadsheet patent was filed in 1971 by Reny Pardo and Remy Landau.
This patent became famous because it was originally rejected by the U.S. patent
office as being pure mathematics. It was only in 1983 that the Patent Office was
overruled by the courts and software implementations of mathematical algo­
rithms were deemed to be patentable.

As this book is written, there are more than 77,000 software companies in
the United States. The software industry has generated enormous revenue and
enormous personal wealth for many founders such as Bill Gates of Microsoft,
Steve Jobs of Apple, Larry Ellison of Oracle, Larry Page and Sergey Brin of
Google, Jeff Bezos of Amazon, and quite a few more.

As of 2011, about 75% of the revenue of software companies comes from
selling more and more copies of existing applications such as Windows and
Microsoft Office. About 25% of the revenue of software companies comes
from innovation or the creation of new kinds of products and services, as dem­
onstrated by Google, Amazon, and hundreds of others.

This is an important distinction because in the long run innovation is the fac­
tor that generates the greatest economic value. Companies and industries that
stop innovating will eventually lose revenues and market share due to satura­
tion of the markets with existing products.

One other interesting issue about innovation is that of “copy cats.” After a
new kind of software application hits the market, fast-followers often sweep

25

right into the same market with products that copy the original features but
include new features as well. In the commercial software business these fast fol­
lowers tend to be more successful than the original products, as can be seen by
looking at the sales history of VisiCalc and Microsoft Excel.

A number of software companies are now among the largest and wealthiest
companies in the world. There are also thousands of medium and small soft­
ware companies as well as giants. Examples of software companies include
CAST, Microsoft, Symantec, IBM, Google, Oracle, SAP, Iolo, Quicken, Com­
puter Aid Inc. and hundreds of others.

The primary value topic for commercial software itself is direct revenue,
with secondary value deriving from maintenance contracts, consulting services,
and related applications.

For example, most companies that lease large enterprise resource-planning
(ERP) packages such as Oracle also bring in consulting teams to help deploy the
packages and train users. They almost always have maintenance contracts that
can last for many years.

As to the economic value of software quality in a commercial context, the
value of quality to the commercial vendors themselves stems from these topics:

•• Reduced cancellation rates for large applications

•• Earlier delivery dates for new applications

•• Favorable reviews by the press and user groups

•• Reduced development costs for new applications

•• Reduced maintenance costs for released applications

•• Reduced customer support costs for released applications

•• Increased market share if quality is better than competitors

•• Fewer security flaws in released applications

The economic consequences of low quality for commercial vendors include

•• Possible class-action litigation from disgruntled customers

•• Possible litigation from customers suffering business losses

•• Protracted delays in delivering new applications

•• Unfavorable reviews by the press and user associations

•• Poor customer satisfaction

Defining Economic Value and Defining the Value of Software Quality

Chapter 1  Defining Software Quality and Economic Value26

•• Loss of customers if competitive quality is better

•• High maintenance costs due to poor quality

•• High customer support costs due to poor quality

•• Elevated numbers of security flaws in released applications

The commercial software world has only a marginal reputation for software
quality. Some companies such as IBM do a good job overall. Others such as
Symantec, Oracle, and Microsoft might try to do good jobs but tend to release
software with quite a few bugs still latent.

If the commercial software vendors were really at state-of-the art levels of
quality control, then software warranties would be both common and effective.
Today, the bulk of commercial software “warranties” include only replacement
of media. There are no guarantees that software will work effectively on the
part of commercial software vendors.

The Economic Value of Software and Quality to COTS Users
and Customers

As of 2011 there are about 14,659,956 U.S. companies that use computers and
software. But the largest 1,000 companies probably use 50% of the total quan­
tity of COTS packages.

There are more than 150,000 government organizations that use computers
and COTS software when federal, state, and municipal agencies are considered
as a set (roughly 100,000 federal and military sites; 5,000 state sites; and
50,000 municipal sites).

The main economic reason that companies, government agencies, and indi­
viduals purchase or lease commercial software packages is that packaged soft­
ware is the least expensive way of gaining access to the features and functions
that the package offers.

If we need an accounting system, an inventory system, and billing system, or
even something as fundamental as a word processor or a spreadsheet, then
acquiring a package has been the most cost-effective method for more than
50 years.

For a company or user to attempt to develop applications with features that
match those in commercial packages, it would take months or even years. We
buy software for the same reason we buy washing machines and automobiles:
they are available right now; they can be put to use immediately; and if we are
lucky, they will not have too many bugs or defects.

In the future, SaaS, SOA, and cloud computing will no doubt displace many
applications with equivalent Web-based services. However, this trend is only

27

just beginning and will probably take another ten years or more to reach
maturity.

The open source companies such as Mozilla and the availability of Web-
based packages such as Google Applications and Open Office are starting to
offer alternatives to commercial packages that are free in many cases. As of
2011 usage of commercial software is still more common than usage of open
source or Web-based alternatives, but when the two compete head-to-head, the
open source versions seem to be adding new customers at a faster rate.

Examples of companies that use COTS packages include manufacturing
companies, law firms, medical offices, small hospitals, small banks, retail stores,
and thousands of other companies. All government units at the federal, state,
and municipal levels use COTS packages in large numbers, as do the military
services. These enterprises use the software to either raise their own profitability
or to lower operating costs, or both.

The economic value of high software quality to corporate and government
consumers of commercial software has these factors:

•• Rapid deployment of COTS applications

•• Quicker deployment of new services and functions

•• Short learning curves to get up to speed in COTS applications

•• Minimizing the risks of in-house development

•• Minimizing the risks of outsource development

•• Reduced maintenance costs for released applications

•• Reduced customer support costs for released applications

The economic consequences of low quality for COTS users include

•• Business transaction errors that damage customers or clients

•• Business transaction errors that damage financial data

•• Possible class-action litigation from disgruntled customers

•• Possible litigation from customers suffering business losses

•• Possible litigation from shareholders about poor quality

•• Protracted delays in delivering new services

•• Poor customer satisfaction

Defining Economic Value and Defining the Value of Software Quality

Chapter 1  Defining Software Quality and Economic Value28

•• High maintenance costs due to poor quality

•• High customer support costs due to poor quality

As an example of the hazards of poor quality from COTS packages, one of the
authors lives in Narragansett, Rhode Island. When the town acquired a new
property tax software package, tax bills were about a month late in being sent
to homeowners, and there were many errors in the calculations. The system
also lagged in producing financial reports for the town council. Eventually, the
package was withdrawn, and an alternate package from another vendor was
used in its place.

A study by one of the authors of the corporate software portfolio for a large
manufacturing company in the Fortune 500 class found that out of 3,200 appli­
cations in the portfolio, 1,120 were COTS packages acquired from about 75
different vendors.

The total initial cost for these COTS applications was about $168,000,000.
Annual leases amounted to about $42,000,000.

Approximately 149 people were devoted exclusively to the operation and
maintenance of the COTS packages. In a single year, about 18,072 high-severity
bugs were reported against the COTS applications in the portfolio.

Indeed, bugs in COTS packages are so common that one large commercial
software vendor was sued by its own shareholders, who claimed that poor qual­
ity was lowering the value of their investments. The case was settled, but the
fact that such a case was even filed illustrates that the COTS vendors need bet­
ter quality control.

COTS packages are valuable and useful to be sure. But due to the marginal
to poor software quality practices of the commercial vendors, customers and
users need to expect and prepare for significant quantities of bugs or defects
and significant staffing and effort to keep COTS packages up and running.

The Economic Value of Software and Quality to Embedded
Software Companies

Embedded software is present in thousands of products in 2011. For consumer
products such as digital watches, digital cameras, smart phones, and similar
devices, high quality is fairly common; bugs or low quality is fairly rare.

For more complex devices that might affect human life or safety, the quality
levels are still quite good, but bugs or errors can have serious consequences for
both those who use the software and for the companies that produce the
devices. Bugs or errors in medical devices, automobile brake systems, aircraft
navigation devices, and weapons systems can lead to death, injuries, and enor­
mous recall and recovery costs.

29

The economic value of software for embedded software producers derives
primarily from sales of physical equipment rather than the software itself.
Examples of companies that create devices with embedded software include
Boeing, Motorola, AT&T, Nokia, medical equipment companies such as
Advanced Bionics, and many others. In total probably 10,000 companies pro­
duce embedded devices and the software within them.

As of 2011, about 45% of the revenue of embedded software companies has
come from selling more and more copies of existing products such as digital
watches, digital hearing aids, and digital cameras.

About 55% of the revenue of embedded software companies has come from
innovation or the creation of new kinds of products and services that did not
exist before, such as cochlear implants, the Amazon Kindle and other eBook
readers, and the control systems of modern automobiles and aircraft.

The economic value of software quality inside embedded software devices
stems from these topics:

•• Reduced cancellation rates for complex devices

•• Creating new kinds of devices never marketed before

•• Earlier delivery of new devices

•• Rapid approvals by government oversight organizations

•• Rapid customer acceptance of new devices

•• Reduced development costs for new devices

•• Reduced maintenance costs for released devices

•• Reduced customer support costs for released devices

•• Increased market share if quality is better than competitors

The economic consequences of low quality for embedded vendors include

•• Possible criminal charges if devices causes death or injury

•• Possible class-action litigation from disgruntled customers

•• Possible litigation from customers suffering business losses

•• Possible government action against medical devices for poor quality

•• Possible shareholder litigation for poor quality

•• Protracted or negative approvals by government oversight groups

Defining Economic Value and Defining the Value of Software Quality

Chapter 1  Defining Software Quality and Economic Value30

•• Poor customer satisfaction

•• Loss of customers if competitor’s quality is better

•• High maintenance costs for devices with poor-quality software

•• High customer support costs for devices with poor-quality software

Because complex devices won’t operate without high-quality software, the
embedded software world has one of the best reputations for software quality
and also for customer support. Some companies such as Advanced Bionics,
Motorola, Apple, and Garmin do a good job overall.

A sign of better-than-average quality control in the embedded domain is the
fact that many embedded device companies have product warranties. In general,
warranties are more common and more complete for embedded software than
for other forms of software.

The Economic Value of Software and Quality to Embedded
Equipment Users

The economic value of software to users of equipment controlled by embedded
software is the ability to operate complex devices that would not exist without
the embedded software. Examples of such devices include robotic manufactur­
ing, undersea oil exploration, medical equipment such as MRI devices and
cochlear implants, navigation packages on board ships and aircraft, and all
forms of modern communication including television, radio, and wireless.

The major difference between embedded software and other kinds of soft­
ware is that users are operating physical devices and might not even be aware
that the devices are controlled by software. Even if users know that embedded
software is in a device, they have no direct control over the software other than
the controls on the devices themselves. For example, users can make many
adjustments to digital cameras but only by means of using the knobs, buttons,
and screens that the cameras have and not by direct changes to the embedded
software itself.

The main economic reason that companies, government agencies, and indi­
viduals acquire embedded devices is because there are no other alternatives
available. You either have a computerized magnetic resonance imaging device
(MRI) or you can’t perform that kind of diagnosis. There are no other choices.

Embedded devices have also lowered the costs and expanded features in
many consumer products. For example, a number of modern digital watches
integrate standard time keeping with stop watches, elapsed time keeping, and
even tide calculations and the phases of the moon.

31

Modern digital cameras have a host of functions that were not available on
normal film cameras, such as electronic zooming in addition to optical zooming;
red-eye correction; and the ability to switch between still and animated
photography at will.

Usage of embedded devices has been growing exponentially for about 25
years. As of 2011 at least 150,000,000 U.S. citizens own digital watches, digital
cameras, or other personal embedded devices.

Approximately 1,500,000 U.S. patients have digital pacemakers, and the
rate of increase is more than 5% per year. There are more than 5,000 installed
MRI devices, and more than 1,000,000 U.S. patients undergo MRI diagnoses
per year.

According to Wikipedia about 30,000 U.S. citizens now hear as a result of
having cochlear implant surgery. (Cochlear implants use a combination of an
external microphone and an internal computer surgically implanted under the
skin. Small wires from the processor replace the damaged cilia in the inner ear.
Cochlear implant devices are fully software controlled, and the software can be
upgraded as necessary.)

Most modern factories for complex devices such as automobiles are now
either fully or partly equipped with robotic machine tools.

Almost all modern automobiles now use embedded devices for controlling
anti-lock brakes (which would otherwise be impossible); fuel injection; naviga­
tion packages; and in some cases controlling suspension and steering. Automo­
bile entertainment devices such as satellite radios, standard radios, DVD
players, and the like are also controlled by embedded devices and software.

The economic value of high embedded software quality to corporate and
government consumers involves these factors:

•• New features and functions only available from embedded devices

•• Onsite upgrades to new embedded software versions

•• Reduced maintenance due to reduction in mechanical parts

•• Rapid deployment of new equipment

•• Fewer product malfunctions

•• Quicker deployment of new services and functions

The economic consequences of low quality for embedded device users include

•• Possible death or injury from software bugs in medical devices

•• Possible death or injury from software bugs in automobiles

Defining Economic Value and Defining the Value of Software Quality

Chapter 1  Defining Software Quality and Economic Value32

•• Possible death or injury from software bugs in aircraft

•• Disruption of robotic manufacturing due to bugs or errors

•• Inability to make repairs without replacing embedded devices

•• Possible class-action litigation from disgruntled customers

•• Possible litigation from customers suffering business losses

•• Protracted delays in delivering new services

•• Poor customer satisfaction

•• High customer support costs due to poor quality

Modern devices controlled by embedded software are one of the greatest
machine revolutions in all of history. There are now dozens of complicated
devices such as drone aircraft, remotely controlled submarines, MRI medical
devices, cochlear implants, and robotic manufacturing that would be impossi­
ble without embedded devices and the software that controls them.

Embedded software and embedded devices are advancing medical diagnosis
and medical treatments for conditions such as deafness and heart conditions.
Today, there are thousands of embedded devices carrying out functions that
were totally impossible before about 1975.

The Economic Value of Software and Software
Quality to Other Business Sectors

There are a number of other business sectors that might be discussed in the con­
text of the value of software and the value of software quality. Among these can
be found

•• Outsource software vendors and outsource software clients and users

•• Defense software vendors and defense software clients and users

•• Systems software vendors and systems software clients and users

•• Open source software vendors and open source software clients and users

•• Gaming software vendors and gaming software clients and users

•• Smart phone software vendors and smart phone software clients and users

33Summary and Conclusions

The views of both value and the value of software quality in these business
sectors, however, are similar to the sectors already discussed. High quality
benefits costs, schedules, and customer satisfaction. Low quality leads to cost
and schedule overruns and dissatisfied customers.

Multiple Roles Occurring Simultaneously

Many large enterprises have multiple roles going on simultaneously. For example,
a major corporation such as AT&T performs all of these roles at the same time:

•• They build internal IT software for their own use.

•• They build web applications for marketing and customer support.

•• They build embedded software for sale or lease to clients.

•• They build systems software for sale or lease to clients.

•• They commission domestic outsource groups to build software under
contract.

•• They commission offshore outsource groups to build software under
contract.

•• They purchase and lease COTS packages.

•• They acquire and utilize open source software.

•• They offer business services that depend upon software.

This is a very common pattern. Many large corporations build and consume
software of multiple types. However, regardless of the pattern, software quality
is a critical success factor on both the development and the consumption sides
of the equation.

Summary and Conclusions

The topic of software quality has been difficult to define for more than 50 years.
The topic of economic value has been difficult to define for more than 150
years. When the two topics are combined into a single book, it is necessary to
start by considering all of the alternatives that surround both terms.

Chapter 1  Defining Software Quality and Economic Value34

The economic value of software needs to be analyzed from both the
production and consumption sides of the equation.

The value of software quality needs to be analyzed in terms of the benefits of
high quality and the harmful consequences of poor quality. And here, too, both
the production and consumption of software need to be considered:

High quality	 Value to producers

	 Value to stakeholders and financial backers

	 Value to users and consumers

Low quality	 Risks and hazards to producers

	 Risks and hazards to stakeholders and financiers

	 Risks and hazards to users and consumers

The essential message that will be demonstrated later in the book is that a
high level of software quality will raise the economic value of software for the
producers, financiers, and the consumers of software applications.

Conversely, low software quality levels will degrade the economic value of
software for both the producers and consumers of software applications.

But achieving high levels of software quality needs effective defect preven­
tion, effective pretest defect removal, effective testing, effective quality estima­
tion, effective quality measurements, effective teams, and effective management.
Testing alone has never been sufficient to achieve high-quality software.

Index

Ada programming language, 434
Aesthetic quality, 11, 15
Agile development

antagonisms, 127, 136
embedded users, 136
at IBM, 257
iterations, 136
at large companies, 257–258
meetings, 223
overview, 136
sprints, 136, 223
stand-ups, 223
testing, 317
unit test, 285

Aid to the handicapped, 459–460
Airbus A380 wiring defects, litigation,

413–414
Akao, Yoji, 62
Albrecht, Allan, 164–165, 170
Algorithmic complexity, 150
Algorithms

extracting from code, 167
extracting from legacy code, 47
requirements, software defect

potentials, 46
requirements gathering, 218

Alpha testing, 318
Analyzing similar applications, 49
Antitrust investigation, IBM, 434
APAR (authorized program analysis

report), 371
Application resource imbalances, 91–92
Applications. See also Embedded

software; Size of applications.
components of, 52
financial value, requirements

gathering, 219
tangible value of, 535–536
useful life, 529–535
work value of, 219

Applied Software Measurement, 40, 98
Appmarq repository, 138, 465–470
Architecture

bypassing, 88–90
defect prevention, 128–129
inspections, pretest defect removal,

204–205
software defect potentials, 41

Attributes of software quality. See
Software quality, factors; specific
attributes.

Authorized program analysis report
(APAR), 371

Automated quality predictions, 136–137
Automated static analysis of source

code, 267–276
Automatic testing

cost and effort, estimating, 338–339
estimating test case volume, 333
frequency of use, 289
overview, 293–294
personnel requirements,

estimating, 336
stages, 284

Automobile industry, analogy to
software industry, 446–447

Automobiles, embedded software, 31
Availability, static analysis, 268
Average quality projects

economic value of, 16
effort, vs. high/low quality projects,

492–494

Babbage, Charles, 434, 454
Backfiring, 66–69
Bad fixes

litigation, 286–287
measuring software quality, 38
origin of term, 38

Benchmark groups, 138

561

Benchmarks of software quality data
Appmarq repository, 138, 465–470
benchmark groups, 138
client reviews of specifications, 237
defect prevention, 137–138
overview, 137–138

Best practices, 244
Beta testing. See Field Beta testing.
Bezos, Jeff, 24
Black, Rex, 286
Black box testing, 291–293
Books and publications

Applied Software Measurement,
40, 98

Estimating Software Costs, 40
The Mythical Man Month, 227,

247, 380
Quality Is Free, 146, 243
Software Assessments...and Best

Practices, 40
Software Engineering Best

Practices, 40
BP drilling bug, 4
Breach of contract, litigation, 382–384
Brin, Sergey, 24
Brooks, Fred, 227, 247, 380
Bug fixes

bad, 38, 286–287
manpower requirements, 3

Bugs. See Defects; specific bugs.
Business agility, economic value of

software quality, 472–473
Business data, computer use in the

United States, 2
Business losses due to poor quality,

474–475
Business productivity, economic

value of software quality,
473–474

Business risks, 181
Business rules

extracting from code, 47, 167
requirements, software defect

potentials, 46
Business topics, requirements

gathering, 219
Business value, economic value of

software quality, 470–475
Bypassing the architecture, 88–90

C++ vs. CHILL, 105
Call center performance, 427
Cancellation of projects

10,000 function point size, 3
cost, 3, 537–538
effort, effects of software quality, 492
litigation, 3, 464–465
rates, effects of software quality,

490–491
reasons for, 492–494
timing of, 491

Capability Maturity Model (CMM), 139
Capability Maturity Model Integrated

(CMMI), 136, 138–139
Capacity testing, 303
Capture-recapture method, 264
Cars. See Automobiles.
CAST

structural quality vs. severe defects,
85–87

study of software quality, 465
Certification

effects on economic value of software
quality, 478–479

of organizations, 141
of professional skills, 140–141
of reusable materials, 133

Certification groups, 140–141. See also
specific groups.

Certified reusable materials, 132–133
Certified reuse combined with patterns,

125–126
Change control problems, litigation, 382
Changeability, 9
CHECKPOINT tool, 106–107
CHILL vs. C++, 105
Clean room testing, 311–312
Client reviews, pretest defect removal

effort and costs, 200
per 1,000 function points, 198
per 10,000 function points, 204, 206
specifications, 235–237

Cloud testing, 313
CMM (Capability Maturity Model), 139
CMMI (Capability Maturity Model

Integrated), 136, 138–139
Cochlear implants, 31, 51
Code complexity, 150–151
Code counting, 68

Index562

Index 563

Code inspections. See Formal
inspections.

Coding
conventions for maintainability, 82
defect prevention, 129–130

Coding defects
backfiring, 66–69
code counting, 68
converting between function points

and logical code statements, 67
by language level, 70
language levels, 65–67, 70
logical code statements vs. physical

lines of code, 67–68
overview, 65–71
quantifying function point totals, 66
software defect potentials, 41
source code volume, determining,

67–69
summary of, 41

Combinatorial complexity,
150–151, 335

Comments, clarity and completeness, 360
Commercial software. See COTS

(commercial off the shelf) software.
Communication, economic value of

software, 457–460
Compatibility testing. See Platform

testing.
Completeness, requirements, 52–55
Complex equipment operations,

economic value of software,
455–456

Complexity
algorithmic, 150
code, 150–151
combinatorial, 150–151
computational, 151
cyclomatic, 149–150, 155
data, 151
defect prevention, 149–155
diagnostic, 151
entropic, 151
essential, 151–152
fan, 152
flow, 152
function point, 152
graph, 152
Halstead, 152

information, 152–153
logical, 153
mnemonic, 153
most significant to software quality,

154–155
organizational, 153
perceptional, 153
problem, 153
process, 154
root causes, 155
semantic, 154
syntactic, 154
topologic, 154

Component testing. See New function
testing.

Computational complexity, 151
Computer gaming, testing stages, 327
Computer use in the United States

business data, 2
military data, 2
by occupation, 6
overview (2010), 2–3
personal data, 2
personal use circa 2011, 5

Conformance to requirements, software
defect potentials, 45

Consumerist website, 409
Contact method, 225
Contract revenue, 450
Control flow

requirements, software defect
potentials, 47

requirements gathering, 219
COQ (Cost of Quality)

defect prevention, 146–148
economic value of software quality,

523–529
requirements gathering, 219

COS (cost of security), 415
Cost drivers, function point metrics,

168–169
Cost reductions, economic value of

software
aid to the handicapped, 459–460
communication, 457–460
data collection and analysis, 456–457
email, 459
high-frequency recurring

calculations, 455

Index564

by quality level, 4
requirements, software defect

potentials, 47
requirements gathering, 218
security flaws, 414–415
software enhancements, 515–516
testing, estimating, 337–342

COTS (commercial off the shelf)
software

requirements, 55
testing stages, 327–328

COTS (commercial off the shelf)
software users

defining value of software quality,
26–28

economic consequences of low
quality, 27–28

examples of, 27
history of, 26–27
number of, 2011, 26
open-source competition, 27
value of high quality, 27

COTS (commercial off the shelf)
software vendors

defining value of software quality,
24–26

economic consequences of low quality,
25–26

examples of, 25
history of, 24–25
litigation against, 381–384
value of high quality, 25

Counting rules, 167
Critical violations, 352–358, 466
Crosby, Phil, 146, 243
Cullinane, 434
Curtis, Bill, 139, 231, 470
Custom software development. See

Internal software development.
Customer defect reports, IBM studies,

404–409
Customer satisfaction

economic value of software
quality, 474

IBM studies of, 302, 390
SQA (software quality assurance)

measurement, 245
Cyber attacks, increase from

2008 to 2009, 7

Cost reductions, economic value of
software (cont.)

in manual effort, 455
operating complex equipment,

455–456
overview, 454–455
social networks, 460
training programs, 457

Cost-per-defect metric. See also Metrics.
abeyant defects, 366
vs. cost per function point, 143–145
defect prevention, 142–145
economic analysis, 96–97, 110–115
flaws, 96–97, 110–115
good quality product, 111–114
invalid defect reports, 364
penalty for quality, 142–145
poor quality product, 111
quality vs. cost per defect, 112–115
used by IBM, 110
zero defect product, 114–115

Costs
canceled projects, effects of software

quality, 3, 537–538
software development, economic value

of software quality, 487–489
tracking, 97–104

Costs, of software quality. See also
Economic value of software
quality.

certification of reusable materials, 133
client reviews, pretest defect

removal, 200
COQ (Cost of Quality), 415
COS (cost of security), 415
desk checking, pretest defect

removal, 200
function point analysis, 138
litigation, 384, 391
maintenance and support, 511–513
maintenance of error-prone modules,

407–408
manpower for bug fixes, 3–4
per function point, 3
post-release defect repairs, 37–38,

388–392, 424–425
post-release defects, 409–414
by program size, 4
project cancellation, 3

Index 565

design, 129
requirements, 128
test cases, 130
test plans, 130
user documentation, 131
websites, 131–132

Defect prevention, estimating
below average methods, 73
definition, 71
effective methods, 72–73
harmful methods, 73
IBM historical data, 72
methods for, 72–73
neutral methods, 73
required data points, 71–72

Defect prevention, formal inspections
combined with formal testing, 121
defect removal, 121–122
effects of, 120–121
quantifying results, 122

Defect prevention, methodologies. See
also Defect prevention, results
analysis.

antagonistic methods, 126–127
certified reuse combined with patterns,

125–126
embedded software, 126
harmful combinations, 127
IBM, 122
increasing defect potentials, 127
large business applications, 126
military and defense software, 126
relative efficiency, 123–125
small business applications, 126
synergistic combinations, 125–127
technical software, 126

Defect prevention, results analysis.
See also Defect prevention,
methodologies.

Agile embedded users, 136
automated quality predictions,

136–137
benchmarks of software quality data,

137–138
certification of organizations, 141
certification of professional skills,

140–141
CMMI (Capability Maturity Model

Integrated), 138–139

Cyclomatic complexity
IBM studies of, 298, 321
maintainability of software, 359
measuring, 149–150
root causes, 155

Data collection and analysis, economic
value of software, 456–457

Data complexity, 151
Data mining, function point metrics, 167
Data types, 2
Databases

defect prevention, 131
software defect potentials, 42

DDE (defect detection efficiency)
current U.S. average, 38
vs. DRE, 38, 75
economic value of software

quality, 504
IBM efficiency studies, 74–76
measuring software quality, 38

Defect prevention
by application size, 133–135
certified reusable materials, 132–133
definition, 37
efficiency levels, 120
formal testing, effects of, 121
IBM historical data, 72
IBM studies of, 119–125
measuring software quality, 37
negative results of, 122
origin of term, 37
patterns, 132–133
test coverage, 120

Defect prevention, defect origins
architecture, 128–129
coding, 129–130
databases, 131
design, 129
requirements, 128
test cases, 130
test plans, 130
user documentation, 131
websites, 131–132

Defect prevention, defect potentials. See
also Software defect potentials.

architecture, 128–129
coding, 129–130
databases, 131

Index566

Development productivity rates, 486–487
Diagnostic complexity, 151
Digital pacemakers, embedded

software, 31
Direct revenue, 450
Disposable prototyping, 61
Documents, requirements gathering,

217–219
DoD (Department of Defense),

productivity measures, 100
Dot.com companies, 457–458
Dot.com crash, 458
DRE (defect removal efficiency),

228–229. See also Pretest defect
removal.

calculating, 38
current U.S. average, 38
vs. DDE, 38, 75
economic value of software quality,

504–505
field Beta testing, 291
formal inspections, 160, 162
functional testing, 290–291
hours for field defects, 114–115
IBM efficiency studies, 74–76
inspections, 250–253, 255–256
measuring software quality, 38
quantifying results, 122
static analysis, 186
subroutine testing, 290–291
system test, 291
testing, 291
by testing stage, 341

Ebombs, 7
Economic analysis

cost tracking errors, 97–104
cost tracking methods, 104
cost-per-defect metric, 96–97, 110–115
distortion factors, 95–97
historical data leakage, 96, 97–104
LOC (lines of code) metric, 96, 105–110

Economic value of software. See also
Economic value of software quality;
Measuring software quality.

commercial software vendors, 24–26
concurrent simultaneous roles, 33
COTS users, 26–28
defining software quality, 17–19

Defect prevention, results analysis.
See also Defect prevention,
methodologies. (cont.)

complexity, 149–155
COQ (Cost of Quality), 146–148
cost-per-defect metrics, 142–145
defect measurements, 156–158
defect tracking, 156–158
formal inspections, 159–164
function point quality metrics,

164–171
overview, 135
QFD (Quality Function Deployment),

174–177
risk analysis, 177–184
Six Sigma, 184–185
standards, 171–174
static analysis, 185–188

Defect rates
cyclomatic complexity, 298, 321
effects of requirements changes, 54

Defect removal efficiency (DRE). See
DRE (defect removal efficiency).

Defects
IBM studies of, 367–368
measuring, 156–158
origins and discovery points, 162–163
root-cause analysis, 429
tracking, 156–158

Defensive mechanisms, lack of, 93–94
Deliverables, inspections, 255
Delivered defect severity levels, 509
Deming, W. Edwards, 227
Department of Defense (DoD),

productivity measures, 100
Department of Homeland Security, 306
Design erosion, 82
Design inspections, 205, 249
Design stage

defect prevention, 129
software defect potentials, 41

Desk checking, pretest defect removal
effort and costs, 200
overview, 208–209
per 1,000 function points, 198
per 10,000 function points, 204, 206

Developer-originated features, 52
Development cost per function point,

489–490

Index 567

Economic value of software quality. See
also Costs, of software quality.

commercial software vendors, 25–26
construction difficulties, 444–449
COTS users, 27–28
developing for speed vs. quality,

448–449
embedded equipment users, 31–32
embedded software companies,

29–30
internal software development, 21
internal software users, 23
quality levels, 16–17

Economic value of software quality,
factors affecting

certification, 478–479
functional quality, 476
project management, 480–481
quality control methods, 481–484
structural quality, 476–477
technology investment, 479
tools, 481–484
training, 477–478

Economic value of software quality,
high/low levels

business losses due to poor quality,
474–475

canceled project costs, 537–538
canceled project effort, 492
COQ (Cost of Quality), 523–529
critical violations, 466
customer satisfaction improvement, 474
DDE (defect detection efficiency), 504
defect potentials, 501–503
delivered defect severity levels, 509
developing software, 461–462
development cost per function point,

489–490
development costs, 487–489
development effort, 486
development productivity rates,

486–487
DRE (defect removal efficiency),

504–505
effort, vs. average-quality projects,

492–494
enhancing software, 514–516
human effort reduction, 463
increasing business agility, 472–473

embedded equipment users, 30–32
embedded software companies, 28–30
executives, 18
history of, 18–19
internal software development, 19–21
internal software users, 22–24
other business sectors, 32–33
quality factors, 16–17

Economic value of software, cost
reductions

aid to the handicapped, 459–460
communication, 457–460
data collection and analysis, 456–457
email, 459
high-frequency recurring

calculations, 455
in manual effort, 455
operating complex equipment,

455–456
overview, 454–455
social networks, 460
training programs, 457

Economic value of software, measuring
commercial estimation tools, 436
financial and accounting methods, 436
overview, 435–436
potential future value, 436
risk factors, 437–441
value factors, 437–441

Economic value of software, revenue
generation

contract revenue, 450
direct revenue, existing clients, 450
direct revenue, new clients, 450
hardware drag-along revenue, 451
hardware revenue, 451
illegal, 452
indirect revenue, 450–451
intellectual property, 451
intellectual property violations, 452
patent violations, 452
patents, 451
phishing, 452
piracy, 452
software books and journals, 452
software drag-along revenue, 451
software personnel agencies, 452
teaching software skills, 451–452
theft of vital records, 452

Index568

Embedded equipment users
defining value of software quality,

30–32
economic consequences of low

quality, 31–32
value of high quality, 31

Embedded software
automobiles, 31
cochlear implants, 31
defect prevention, 126
digital pacemakers, 31
litigation, 411
MRI devices, 31
vs. other kinds of software, 30
requirements, 55
software industry, 2
uses for, 30–31

Embedded software companies
defining value of software quality,

28–30
economic consequences of low

quality, 29–30
quality, vs. internal software

development, 21
value of high quality, 29

Embedded users
Agile development, 136
minimizing requirements

defects, 58–59
EMP (electromagnetic pulse), 7
Employment, United States, 22
End-user license agreement (EULA),

381, 453
End-user software, testing stages,

325–326
Engineering population of the United

States, 3
Entities and relationships, 46, 218
Entropic complexity, 151
Entropy, maintainability of

software, 359
Ericsson, John, 271
Error-prone modules

history of, 407
IBM studies of, 302
identifying, 408
maintainability of software, 360
maintenance costs, 407–408
post-release defect potentials, 404–409

Economic value of software quality,
high/low levels (cont.)

maintenance and support, 461–462,
511–513

maintenance defect volumes,
513–514

per 10,000 function points,
541–544

post-release defects, 507–509
primary impacts, 460–461
product innovation, 463–465
productivity improvement, 473–474
professional testers, 500–501
project cancellation rates, 490–491
project distribution, by quality level,

538–540
quantifying business value,

470–475
reducing business risks, 471–472
reliability, 510–511
ROI (Return on Investment),

536–537
schedules, 484
severe defects per function point,

509–510
software as a marketed commodity, 462
staffing, 484–486, 516–517
tangible value of applications,

535–536
TCO (total cost of ownership),

520–529
technical debt, 465–470
test cases per function point, 497–498
test coverage, 498–500
test stages, 494–496
testing as a percent of development,

496–497
timing of canceled projects, 491
total defect removal, 505–507
total effort for five years, 517–520
total software defects, 503–504
useful life of applications, 529–535

Editing user documentation, 265–267
Egypt riots, effects of social

networking, 460
Electromagnetic pulse (EMP), 7
Electronic voting machine problems, 45
Ellison, Larry, 24
Email, economic value of software, 459

Index 569

Feature races, 55
Field Beta testing, 291, 318–319
Financial and accounting measurements

of software value, 436
Financial risks, 180
Financial value of applications,

requirements gathering, 219
Fixed-value method, 225
Flesch, Rudolf, 211
Flesch index, 211–213
Flexibility, 11
Flow complexity, 152
Forensic analysis of legacy code, 47
Formal inspections

antagonisms, 136
capture-recapture method, 264
code, 249
in conjunction with static analysis,

257–258
criteria for, 161, 254
current usage, 159, 256–257
data collected, 258–259
defect origins and discovery points,

162–163
defect prevention, 159–164
defect removal efficiency, 160, 162
deliverables, 161, 255
design, 249
DRE (defect removal efficiency),

250–253, 255–256
efficiency, 160
formal testing, 250
group dynamics, 255
history of, 159–164, 249
at IBM, 64, 249, 495
logistical issues, 261–262
minimizing requirements defects,

62–64
number of participants, 254–255
overview, 159–164
permutations of methods,

250–252
preparation and execution

guidelines, 263
quality assurance, 249
sample defects, 260–261
software requirements, 62–64
tagging and releasing defects, 264
time required, 262

removing and replacing, 408
social problems associated with,

408–409
Essential complexity, 151–152
Estimating. See also Measuring.

automatic testing costs, 338–339
DDE, 74–76
DRE, 74–76
personnel requirements, 335–337
size of applications, 52–55
software defect potentials,

115–116
software defect prevention. See Defect

prevention, estimating.
test case volume, 333
testing costs, 337–342

Estimating, defect prevention
below average methods, 73
definition, 71
effective methods, 72–73
harmful methods, 73
IBM historical data, 72
methods for, 72–73
neutral methods, 73
required data points, 71–72

Estimating Software Costs, 40
Estimation problems, litigation, 383
Ethical risks, 182
EULA (end-user license agreement),

381, 453
Evolutionary prototyping, 61
Execution, definition, 288
Executives, defining value of software

quality, 18
Expandability, 11
Extensibility, 11
External risks, 181
Extreme programming (XP) unit

test, 296

Factors in software quality. See Software
quality, factors.

Fagan, Michael, 120, 160, 253
Failure to set processing limits, 90
False positives, 282
Fan complexity, 152
FBI, sharing computer security

information, 305
Feature bloat, 55

Index570

Functional quality, 268, 476
Functional testing, 290–291, 293
Funding projects, 437–444

Gack, Gary, 253, 322
Gamma testing, 318
Gates, Bill, 24
Geneen, Harold, 243
General testing

cost and effort, estimating, 338
estimating test case volume, 333
forms of, 294–302. See also specific

forms.
frequency of use, 289
overview, 283–284
personnel requirements, estimating, 336

Gilb, Tom, 160, 253–254
Glass box testing. See White box

testing.
Grade-level readability scores, 212
Graph complexity, 152
Growth

handling over time, 48–49
rate vs. schedules, 53

Gunning, Robert, 212
Gunning Fog index, 212–213

Halstead, Maurice, 152
Halstead complexity, 152
Hamer-Hodges, Ken, 306
Handicapped aids, 459–460
Hardware drag-along revenue, 451
Hardware platforms

requirements, software defect
potentials, 47

requirements gathering, 218
Hardware revenue, 451
Health risks, 178
Hewlett Packard’s algorithm for

replacing ink cartridges, 409–410
High quality, value of. See also

Economic value of software
quality, high/low levels.

commercial software vendors, 25
COTS users, 27
embedded equipment users, 31
embedded software companies, 29
internal software development,

22–23

Formal inspections, defect prevention
combined with formal testing, 121
defect removal, 121–122
effects of, 120–121
quantifying results, 122

Formal testing, 250
Freezing requirements changes, 54
Frequency distribution, customer-

reported defects, 302
Function points

analysis, cost, 138
complexity, 152
converting between logical code

statements, 67
cost of software, 3
cost-per-defect metrics, 143–145
largest known projects, 444
personnel requirements, estimating,

335–337
quantifying totals, 66
software defect potentials by, 43
test case volume, estimating, 332–335
testing, estimating cost and effort,

337–342
Function points, quality metrics

adjustment factors, 166–167
algorithms, extracting from code, 167
benchmark groups, 138
business rules, extracting from

code, 167
cost drivers, 168–169
counting rules, 167
current average defect levels, 170
data mining, 167
defect prevention, 164–171
developed by IBM, 66
history of, 165
inputs, 165
inquiries, 165
interfaces, 165
language levels, 167–168
LOC (lines of code) metric, 169
logical files, 165
outputs, 165
overview, 164–171
SLOC (source lines of code), 167
sociological factors, 170
software defect potentials, 39
uses for, 169

Index 571

defect root-cause analysis, 429
distribution of customer defect

reports, 404–409
DRE efficiency, 74–76
error-prone modules, 302
frequency distribution, customer-

reported defects, 302
low-quality effects on productivity

and schedules, 295
MVS customers, 390
pretest inspections, 484
software maintainability,

358–362
technical manuals, user opinions of,

266–267
test coverage, 321, 499–500
testing, effects on schedules, 484
training, productivity benefits,

477–478
IEEE standards

829-2008: software test
documentation, 321

1012-2004: software verification and
validation, 321

IFPUG (International Function Point
Users Group), 46, 165

Illegal revenue from software, 452
Improvability, 11
Independent testing, 314–315
Independent verification and

validation (IV&V), 205,
237–239

Indirect revenue, 450–451
Informal peer reviews, 209–210
Information complexity, 152–153
Information systems defects, litigation,

411–412
Information Technology (IT), testing

stages, 326
Inputs

function point metrics, 165
requirements, software defect

potentials, 45
requirements gathering, 217

Inquiries, function point metrics, 165
Inquiry types

requirements, software defect
potentials, 46

requirements gathering, 218

Historical data leakage, 96, 97–104
Hollerith, Herman, 454
House of quality, 62
Human effort reduction, economic value

of software quality, 463
Humphrey, Watts, 139, 295
Hunter, Justin, 322

IBM
Agile development, 257
antitrust investigation, 434
APAR (authorized program analysis

report), 371
bad fixes, origin of, 38
bypassing requirements, 52
capture-recapture method, 264
clean room testing, 311–312
cost-per-defect metric, 110
defect prevention, 37, 72, 122
formal inspections, 62–64, 159, 249
function point quality metrics,

66, 165
JAD (joint application design), 58
key defect potentials, 37
latent defects, 74–76, 347–348
maintenance, definition, 511
open door policy, 481
phase reviews, 247–248
PTM (program trouble

memorandum), 371
quantifying language levels, 65–66
release numbering, 74–76
severity levels, 281–282
SQA (software quality

assurance), 244
technical writers, compensation, 266
unbundling software applications, 434
usability testing, 317–318

IBM studies of
code inspections, and test

schedules, 495
customer satisfaction, 302, 390
DDE efficiency, 74–76
defect data, 367–368
defect prevention, 119–125
defect rates and cyclomatic

complexity, 298, 321
defect repair hours for field defects,

114–115

Index572

Kinkaid, J. Peter, 211
KLOC (thousand lines of code),

465–470. See also LOC (lines of
code) metric.

Knowledge risks, 182–183
Kohli, Bob, 253

Lab testing, 319–320
Lack of defensive mechanisms, 93–94
Langevin, James, 306
Language levels

coding defects by, 70
description, 65–66
examples, 67
function point metrics, 167–168
origin of, 65

Languages
life expectancy, 256
maintainability of software, 360–361
supported by static analysis, 186–187,

272–275
Large business applications, defect

prevention, 126
Latency, static analysis, 268
Latent defects

causes, 348
definition, 347
discovery by users, 362–363
IBM, 74–76, 347–348

Lawsuits. See Litigation.
Layered approach to measuring software

quality, 77
Legal quality, 11, 15
Legal risks, 179
Lines of code (LOC) metric. See LOC

(lines of code) metric.
Lint tool, 267–268
Litigation

Airbus A380 wiring defects, 413–414
bad fixes, 286–287
barriers to, 381
breach of contract, 3, 382–384
cancellation of projects, 3, 464–465
change control problems, 382
client reviews of specifications, 235
against commercial software vendors,

381–384
costs, 384, 391
embedded software, 411

Inspections. See Formal inspections.
Installation requirements, 47, 219
Integration testing, 300, 325
Intellectual property, 451
Intellectual property violations, 452
Interfaces

function point metrics, 165
requirements, software defect

potentials, 46
requirements gathering, 218

Internal software development
defining value of software quality,

19–21
economic consequences of low

quality, 21
examples, 19
history of, 19–21
purposes of, 20
quality, vs. embedded software

community, 21
value of high quality, 22–23

Internal software users
common internal software types, 22
defining value of software quality,

22–24
economic consequences of low

quality, 23
employment figures, United States

mid-2010, 22
number of, 2011, 22

Invalid defects, 282
ISBSG (International Software

Benchmark Standards Group),
138, 370

IT (Information Technology), testing
stages, 326

Iterations, 136
IV&V (independent verification and

validation), 205, 237–239

Jacobsen, Ivar, 59
JAD (joint application design), 58
Japan vs. United States. See United States

vs. Japan.
Jobs, Steve, 24
Juran, Joseph, 146, 227

Kaizen, 226–231
King, Ada, 434

Index 573

embedded equipment users, 31–32
embedded software companies,

29–30
internal software development, 21
internal software users, 23
on productivity and schedules, 295

MacAfee antivirus bug, 4
Maintainability of software. See also

Post-release defects.
comments, clarity and

completeness, 360
cyclomatic complexity, 359
design erosion, 82
entropy, 359
error-prone modules, 360
IBM study, 358–362
maintenance assignment scope,

358–359
maintenance tools and

workbenches, 360
maintenance workloads, 360
measuring, 81–82
metrics, 358–359
naming and coding conventions, 82
positive influences, 359–361
programming languages, 360–361
rate of structural decay, 359
static analysis, 270
structural diagrams, 360
time requirements, 82
training for, 359

Maintenance and support
assignment scope, 358–359
call center performance, 427
costs of software quality, 511–513
defect repair effort by activity, 429
defect repair schedule ranges,

428–429
defect repairs per month, 428
defect root-cause analysis, 429
economic value of software quality,

461–462, 511–513
incoming defect reports per client, 428
incoming defect reports per month,

427–428
maintenance, IBM definition, 511
maintenance assignment scope, 427
measurement issues, 425–431

end-user license agreements, 381
estimate problems, 383
examples, 410–412
Hewlett Packard’s algorithm for

replacing ink cartridges, 409–410
IBM antitrust investigation, 434
inaccurate status checking, 383–384
information systems defects, 411–412
military and defense software, 411
most common charges, 382–384
outsourcing, 3
provability, 10
quality control problems, 382
readability of legal documents

(Florida), 212
settling out of court, 391
SQA measurement data, 245
testing stages noted in, 331–332
Therac-25 radiation therapy device,

412–413
time required, 391
Verizon billing algorithms, 410
web defects, 411–412

Litigation testing, 312
LOC (lines of code) metric

case study, CHILL vs. C++, 105–109
economic problems, 105–110
flaws, 96, 105–109
function point metrics, 169
KLOC (thousand lines of code),

465–470
as professional malpractice, 105, 109
shortcomings, 39
SLOC (source lines of code), 167

Localization testing, 315
Logic bombs, 81
Logical code statements vs. physical lines

of code, 67–68
Logical complexity, 153
Logical files

function point metrics, 165
requirements, software defect

potentials, 46
requirements gathering, 218

Low quality, economic consequences of.
See also Economic value of
software quality, high/low levels.

commercial software vendors, 25–26
COTS users, 27–28

Index574

pretest defect removal, 37
software defect potentials, 37
test defect removal, 37

Meetings, Agile development, 223
Metrics. See also Measuring.

data mining, 167
function point cost drivers, 168–169
function point quality, 164–171
KLOC (thousand lines of code),

465–470
LOC (lines of code), 96, 105–110
maintainability of software,

358–359
Metrics, cost-per-defect

abeyant defects, 366
vs. cost per function point, 143–145
defect prevention, 142–145
economic analysis, 96–97, 110–115
flaws, 96–97, 110–115
function point counting rules, 167
good quality product, 111–114
invalid defect reports, 364
penalty for quality, 142–145
poor quality product, 111
quality vs. cost per defect, 112–115
used by IBM, 110
zero defect product, 114–115

Metrics, function point quality
adjustment factors, 166–167
algorithms, extracting from code, 167
benchmark groups, 138
business rules, extracting from code, 167
cost drivers, 168–169
counting rules, 167
current average defect levels, 170
data mining, 167
defect prevention, 164–171
developed by IBM, 66
history of, 165
inputs, 165
inquiries, 165
interfaces, 165
language levels, 167–168
LOC (lines of code) metric, 169
logical files, 165
outputs, 165
overview, 164–171
SLOC (source lines of code), 167
sociological factors, 170

Maintenance and support (cont.)
planning, 374–375
post-release defect repair metrics,

427–429
profiting from, 375–376
staffing, 516–517
support ratios, 375
tools and workbenches, 360
types of maintenance work, 426–427
workloads, 360

Maintenance assignment scope, 427
Maintenance defect volumes, economic

value of software quality, 513–514
Major tasks. See Use cases.
Management information system (MIS),

testing stages, 326
Manpower for bug fixes, 3–4
Manual effort, economic value of

software, 455
Manual testing, 293–294
McCabe, Tom, 151–152
Measurability, definition, 10
Measurable software attributes, 77
Measurement issues, maintenance,

425–431
Measuring. See also Metrics.

maintainability, 81–82
security, 80–81

Measuring economic value of software
commercial estimation tools, 436
financial and accounting methods, 436
overview, 435–436
potential future value, 436
risk factors, 437–441
value factors, 437–441

Measuring software quality. See also
Economic value of software quality;
Metrics; specific topics.

bad fixes, 38
DDE (defect detection efficiency), 38
defect prevention, 37
DRE (defect removal efficiency), 38
key topics, 36–37
layered approach, 77
measurable software attributes, 77.

See also specific attributes.
post-release defect removal costs, 38
post-release defects, 38
pre-release defect removal costs, 37

Index 575

Pacemakers, embedded software, 31
Page, Larry, 24
Pair programming, 231–234
Patent violations, 452
Patents, 451
Patterns

defect prevention, 132–133
static analysis, 275–276

PBX project case study, 105–109
Peer reviews, 209–210
Peer reviews, pretest defect removal

effort and costs, 201
per 1,000 function points, 198

Penetration teams, 309
Penetration testing, 308–309
Perceptional complexity, 153
Performance by Design, 80
Performance criteria

requirements, software defect
potentials, 47

requirements gathering, 219
Performance efficiency

measuring, 79–80
Performance by Design, 80
static analysis, 269–270

Performance testing, 304
Personal computer use, United States

circa 2011, 5
Personal data, United States

distribution of, 2
organizations tracking, 7

Personal desk checking. See Desk
checking.

Phase reviews, 246–248
Phases, software development, 246–248
Phishing, 452
Physical lines of code vs. logical code

statements, 67–68
Piracy, 452
Platform testing, 310
Poka yoke

contact method, 225
corrective procedures, 225–226
fixed-value method, 225
motion sequence method, 225–226
name origin, 224
pretest defect removal, 224–226

Poppendieck, Tom, 227
Population of the United States, 2–3

software defect potentials, 39
uses for, 169

Military and defense software
defect prevention, 126
DoD productivity measures, 100
independent testing, 314–315
litigation, 411
standards, 139
testing stages, 329

Military data, computer use in the
United States, 2

Mills, Harlan, 312
MIS (management information system),

testing stages, 326
Mizuno, Shigeru, 62
Mnemonic complexity, 153
Moral elements of software quality, 17
Mortgage record misplacement, 454
Motion sequence method, 225–226
MRI devices, embedded software, 31
Multi-platform environments,

requirements generation and
analysis, 49

MVS customers, IBM studies of, 390
Mythical Man Month, The, 227,

247, 380

Naming conventions, maintainability, 82
Nationalization, 49, 315
New function testing, 297–298, 325
Nonaka, Ikuro, 222
Nonfunctional quality, static

analysis, 268
Nonfunctional testing, 293

Occupation groups, computer use, 6
Open door policy, IBM, 481
Open source software development

competition for COTS, 27
testing stages, 327

Organizational complexity, 153
Outputs

function point metrics, 165
requirements, software defect

potentials, 45
requirements gathering, 217

Outsource vendors, testing stages, 327
Outsourcing, breach of contract

litigation, 3

Index576

commercial software, 377–378
customer logistics, 416–425
defect context information, 372
distribution of effort, large

application, 421–423
distribution of effort, small

application, 418–419
effort, by severity level, 423–424
embedded software, 377
FAQs (frequently asked

questions), 378
internal software, 376
key issues, 424
maintenance information, 372–373
military and defense software, 377
open source software, 377
outsource software, 376–377
per client, 428
per month, 427–428
proprietary information, 373–374
PTM (program trouble

memorandum), 371
public information, 371–372
SaaS (Software as a Service), 376
Severity 2 defects, 416–417

Post-release defect severity levels
critical violations, 352–358
IBM method, 349–351
rule checkers, 352
static analysis, 352
structural quality perspective,

351–358
Post-release defects. See also

Maintainability of software.
abeyant defects, 365–366
across multiple releases, 370
costs, 409–414
DDE, measuring, 368–370
DRE, measuring, 368–370
duplicate reports, 366–367
economic value of software quality,

507–509
factors influencing, 348–349
in first 90 days of use, 350
first-year discovery rates, 367–368
invalid defect reports, 363–365
orthogonal defect reporting, 349–350
as possible enhancements, 350
security flaws, 414–415

Post-release defect potentials. See also
Software defect potentials.

defects found in first year of use, 400,
402–403

delivered defects, by project type and
size, 398–399

delivered defects, per function
point, 399

DRE, by project type and size, 397
error-prone modules, 404–409
by project type and size, 395–396
Severity 1 and 2, first year of use,

405–406
Post-release defect repairs

call center performance, 427
case studies, 379–381
costs, 388–392, 424–425
customer logistics, 416–425
defect repair effort by activity, 429
defect repair schedule ranges,

428–429
defect repairs per month, 428
defect root-cause analysis, 429
effort by activity, 429
incidents per month, 428
incoming defect reports per

client, 428
incoming defect reports per month,

427–428
large applications, 389–392
maintenance assignment scope, 427
major variables, 392
measurement issues, 425–431
measuring software quality, 38
medium applications, 388
metrics, 427–429
personnel for, 378–381, 385–392
post-release defect repair metrics,

427–429
schedule ranges, 428–429
small applications, 387–388
software occupation groups involved,

385–392
types of maintenance work, 426–427
variables affecting, 424–425

Post-release defect reports
APAR (authorized program analysis

report), 371
cloud software, 376

Index 577

phase reviews, 246–248
poka yoke, 224–226
proof reading user documentation,

265–267
proofs of correctness, 220–222
readability of text documents, 211–219
scrums, 222–224
small projects, 198
SQA reviews, 239–246

Pretest inspections, 484
Principle of least authority, 306
Priven, Lew, 120, 253–254
Problem complexity, 153
Process complexity, 154
Process quality, 11–14
Processing limits, failure to set, 90
Product innovation, economic value of

software quality, 463–465
Productivity

DoD measures, 100
economic value of software quality,

473–474
effects of low quality, 295
effects of training, 477–478
rates, developing, 486–487

Productivity, economic value of software
quality, 473–474

Professional testers, economic value of
software quality, 500–501

Program trouble memorandum
(PTM), 371

Programming languages. See Languages.
Programs. See Applications.
Project cancellation. See Cancellation

of projects.
Project distribution, by quality level,

538–540
Project management, effects on

economic value of software quality,
480–481

Proof reading user documentation,
265–267

Proofs of correctness, 220–222
Prototyping

appropriate use of, 61
disposable, 61
evolutionary, 61
minimizing requirements defects, 60–61
time-box, 61

service pack repairs, 349
undocumented features, 364–365
valid unique defects, 370

Potential defects. See Defect prevention,
defect potentials; Post-release defect
potentials; Requirements, software
defect potentials; Software defect
potentials.

Potential future value, economic value of
software, 436

Predetermined criteria, 289
Predictability, 10
Predicting. See Estimating.
Pretest defect removal. See also DRE

(defect removal efficiency).
measuring software quality, 37
overview, 191–196
United States vs. Japan, 227–231

Pretest defect removal, large projects
defect potentials per 10,000 function

points, 202–203
high-quality vs. low-quality, 204–207
removal methods, 203, 204–205, 207.

See also specific methods.
vs. small projects, 201–202

Pretest defect removal, small projects
defect potentials, by function points,

196–197
effort and costs, 199–202
overview, 196–197
problems, 199
removal methods, 198. See also

specific methods.
Pretest defect removal methods. See also

Formal inspections; specific
methods.

automated static analysis of source
code, 267–276

automated text checking for
documents, 211–219

client reviews of specifications, 235–237
desk checking, 208–209
editing user documentation, 265–267
informal peer reviews, 209–210
IV&V (independent verification and

validation), 237–239
Kaizen, 226–231
large projects, 203–207
pair programming, 231–234

Index578

Regression testing
distribution in U.S. software

projects, 325
DRE (defect removal efficiency), 291
overview, 299

Release numbering, IBM system for,
74–76

Reliability
economic value of software quality,

510–511
measuring, 78–79
static analysis, 269
of testing, 44

Reporting defects. See also Post-release
defect reports.

APAR (authorized program analysis
report), 371

customer defect reports, IBM studies,
404–409

PTM (program trouble
memorandum), 371

SOAR (Software Security State of the
Art Report), 306

Requirements
ambiguity, 51–52
bypassing, 52
changing
defect rates, 54
for commercial software, 55
completeness, 52–55
components of, 52
defect prevention, 128
defect rates, 54
deliverables, 63
developer-originated features, 52
for embedded applications, 55
feature bloat, 55
feature races, 55
freezing, 54
for individual inventors, 55
inspections, pretest defect removal, 204
origins of, 50–52
requirements creep, 59
schedules vs. growth rate, 53
size, 52–55
software defect potentials, 40
standard outline, 56–58
structure, 52–55
values of, 50–52

Provability, 10
PSP/TSP unit test, 295–296
PTM (program trouble memorandum), 371

QFD (Quality Function Deployment)
defect prevention, 174–177
DRE (defect removal efficiency), 176
minimizing requirements

defects, 62
overview, 174–177

Quality. See Software quality.
Quality assurance inspections, 249
Quality circles, 230
Quality control methods, effects on

economic value of software quality,
481–484

Quality control problems,
litigation, 382

Quality Is Free, 146, 243
Quality levels. See also High quality;

Low quality.
costs by, 4
requirements, software defect

potentials, 47
requirements gathering, 218

Quality risks, 178–179
Quantifying. See also Measuring.

business value, 470–475
DRE (defect removal efficiency), 122
function point totals, 66
language levels, 65–66
results of formal inspections, 122
software defect potentials, 39

Quantitative data, 279–282

Radice, Ron, 120, 253
Rational Unified Process (RUP),

antagonisms, 127, 136
Readability of legal documents

(Florida), 212
Readability of text documents

automated checking, 211–219
Flesch index, 211–213
grade-level scores, 212
Gunning Fog index, 212–213
patterns of taxonomy, 216–217
requirements gathering topics,

217–219
standard taxonomies, 213–216

Index 579

conformance to requirements, 45
control flow, 47
costs, 47
current U.S. average, 45
electronic voting machine

problems, 45
entities and relationships, 46
gathering process, 45–47
hardware platforms, 47
inputs, 45
inquiry types, 46
installation requirements, 47
interfaces, 46
logical files, 46
major tasks, 47. See also Use cases.
outputs, 45
performance criteria, 47
quality levels, 47
reuse criteria, 47
schedules, 46
security criteria, 47
software platforms, 47
summary of, 40
toxic requirements, 45
training requirements, 47
use cases, 47
Y2K problem, 45

Requirements creep, 59
Requirements generation and analysis

tool, features and functions
algorithms, extracting from legacy

code, 47
analyzing similar applications, 49
automatic application sizing, 48
automatic test case definition, 48
business rules, extracting from legacy

code, 47
dynamic aspects of applications, 48
forensic analysis of legacy

code, 47
handling growth over time,

48–49
identifying common generic

features, 48
multi-platform environments, 49
nationalization, 49
security protection, 49–50

Return on Investment (ROI). See ROI
(Return on Investment).

Requirements, gathering
algorithms, 218
application size, 218
control flow, 219
COQ (Cost of Quality), 219
critical business topics, 219
development cost, 218
for documents, 217–219
entities and relationships, 218
financial value of the

application, 219
hardware platforms, 218
inputs, 217
inquiry types, 218
installation requirements, 219
interfaces, 218
logical files, 218
outputs, 217
performance criteria, 219
quality levels, 218
reuse criteria, 219
risk assessment, 219
ROI (Return on Investment), 219
schedules, 218
security criteria, 218
software platforms, 218
TCO (total cost of ownership), 219
training requirements, 219
use cases, 219
work value of the application, 219

Requirements, minimizing defects
embedding users, 58–59
formal inspections, 62–64
JAD (joint application design), 58
least/most effective techniques,

64–65
prototyping, 60–61
QFD (Quality Function

Deployment), 62
sprints, 58–59
standardizing outlines, 56–58
use cases, 59–60
user stories, 60

Requirements, software defect
potentials. See also Software
defect potentials.

algorithms, 46
application size, 46
business rules, 46

Index580

Robo calls, 458
ROI (Return on Investment)

economic value of software quality,
536–537

requirements gathering, 219
Root causes complexity, 155
Rule checkers, 352
Rules libraries, 187
RUP (Rational Unified Process),

antagonisms, 127, 136
Ruskin, John, 17

Safety risks, 178
Scenarios. See Use cases.
Schedules

code inspections, effects
of, 495

economic value of software
quality, 484

vs. growth rate, 53
low-quality effects on, 295
requirements, software defect

potentials, 46
requirements gathering, 218
testing, effects of, 484

Schwaber, Jeff, 222
Scrums

in Agile development, 222–224
word origin, 222

Scrums, pretest defect removal
effort and costs, 200
overview, 222–224
per 1,000 function points, 198

Security. See also Cyber attacks.
COQ (Cost of Quality), 415
COS (cost of security), 415
criteria requirements, software defect

potentials, 47
CSIRT (Computer Security Incident

Response Team), 415
Department of Homeland

Security, 306
FBI, 305
infections, analogy to medical

infections, 306
logic bombs, 81
measuring, 80–81
penetration teams, 309
penetration testing, 308–309

Reuse criteria
requirements, software defect

potentials, 47
requirements gathering, 219

Revenue generation, economic value of
software

contract revenue, 450
direct revenue, existing clients, 450
direct revenue, new clients, 450
hardware drag-along revenue, 451
hardware revenue, 451
illegal, 452
indirect revenue, 450–451
intellectual property, 451
intellectual property violations, 452
patent violations, 452
patents, 451
phishing, 452
piracy, 452
software books and journals, 452
software drag-along revenue, 451
software personnel agencies, 452
teaching software skills, 451–452
theft of vital records, 452

Reverse appraisals, 481
Risk analysis

by application size, 177–178
business, 181
by category, 178–183
defect prevention, 177–184
economic value of software, 437–441
economic value of software quality,

471–472
ethical, 182
external, 181
factors affecting software quality,

437–441
financial, 180
health and safety, 178
knowledge, 182–183
legal, 179
overlapping topics, 183–184
overview, 177–184
quality, 178–179
requirements gathering, 219
security, 178
by severity, 178–183
social, 181
traditional software, 179–180

Index 581

Smart-phone applets, testing
stages, 326

SOA (Service Oriented Architecture)
testing, 313–314

SOAR (Software Security State of the
Art Report), 306

Social interaction among workers, 231
Social networks, economic value of

software, 460
Social risks, 181
Sociological factors, function point

metrics, 170
Software. See also Applications.

drag-along revenue, 451
as a marketed commodity, 462
testing definition, 288
value of. See Economic value of

software.
Software Assessments...and Best

Practices, 40
Software Assurance (SwA), 306
Software books and journals,

publishing, 452
Software companies

copy cats, 24–25
currently, United States, 24
fast followers, 24–25

Software defect potentials
by application size, 43
architectural defects, 41
coding defects, 41
database defects, 42
definition, 37
design defects, 41
economic value of software quality,

501–503
estimating, 115–116
factors affecting, 44–45
function point metrics, 39
by function points, 43
measuring software quality, 37
origin of term, 37
overview, 39–40
post-release. See Post-release defect

potentials.
quantifying, 39
requirements defects, 40. See also

Requirements, software defect
potentials.

principle of least authority, 306
requirements gathering, 218
requirements generation and analysis,

49–50
risk assessment, 178
static analysis, 270
viral protection testing, 304–308
weaknesses, 92–93

Security testing, 309
SEI (Software Engineering Institute), 139
Semantic complexity, 154
Service Oriented Architecture (SOA)

testing, 313–314
Service quality

definition, 11
importance ranking, 14–15

Settling litigation out of court, 391
Severe defects per function point,

509–510
Severity levels

IBM, 281–282
testing, 281–282

Severity levels, post-release defects
critical violations, 352–358
IBM method, 349–351
rule checkers, 352
static analysis, 352
structural quality perspective,

351–358
“Silver bullet” approach, 227
Six Sigma, 184–185
Size of applications

automatic sizing, 48
cost of software, 4
defect prevention, 133–135
estimating from requirements,

52–55
measuring, 83
requirements, software defect

potentials, 46
requirements gathering, 218
risk analysis, 177–178
software defect potentials, 43
static analysis, 270–271
testing stages, 329–331

SLOC (source lines of code), 167. See
also LOC (lines of code) metric.

Small business applications, defect
prevention, 126

Index582

economic value, 16–17
high quality, 17
influence of, 16
legal quality, 11, 15
low quality, 17
most effective, 16
process quality, 11, 12–14
service quality, 11, 14–15
standards quality, 11, 15
technical quality, 11–12
usage quality, 11, 14

Software quality assurance (SQA). See
SQA (software quality assurance).

Software requirements. See
Requirements.

Software Security State of the Art Report
(SOAR), 306

Source code volume, determining,
67–69

Source lines of code (SLOC), 167
Specialized testing

cost and effort, estimating, 339
estimating test case volume,

333–334
forms of, 303–316. See also specific

forms.
frequency of use, 289–290
overview, 284–285
personnel requirements, estimating,

336–337
Sprints

Agile development, 223
definition, 136
minimizing requirements defects,

58–59
SQA (software quality assurance)

best practices, 244
customer satisfaction measurement, 245
definition, 240
at IBM, 244
key classes of software products, 243
in large organizations, 244
measurement data, 244–245
measurement data in litigation, 245
organizational placement, 243
reviews, pretest defect removal, 205,

206, 239–246
staffing levels, 241–243
vs. testing, 243

Software defect potentials (cont.)
sources of, 37, 40–43
test case defects, 42
test plan defects, 42
United States vs. Japan, 228–229
user documentation defects, 42
website defects, 43

Software development
costs, 487–489
economic value of software quality,

461–462
effort, 486

Software Engineering Best Practices, 40
Software Engineering Institute (SEI), 139
Software enhancements, 514–516
Software industry

analogy to automobile industry,
446–447

criteria for, 433
embedded software, 2
EULA (end-user license agreement), 453
vs. other industries, 453–454
software companies, 2
software distribution, 453–454

Software personnel agencies, 452
Software platforms

requirements, software defect
potentials, 47

requirements gathering, 218
Software quality. See also Measuring

software quality.
effects on individuals, 4–5
importance of, 1–8
static analysis, 268
vs. testing, 10

Software quality, defining
contextual definitions, 9
criteria for, 10–11. See also specific

criteria.
focus areas, 11. See also specific areas.
overview, 8–9
quality attributes, 9. See also specific

attributes.
quality types, 11. See also specific

types.
Software quality, factors. See also

specific factors.
aesthetic quality, 11, 15
average quality, 16

Index 583

usage patterns, 275–276
weaknesses, 271

Status checking, litigation, 383–384
Stewart, Roger, 120, 253–254
Stress testing, 303
Structural decay, maintainability of

software, 359
Structural diagrams, maintainability of

software, 360
Structural quality

definition, 11
effects on economic value of software

quality, 476–477
severity levels, post-release defects,

351–358
static analysis, 268–269

Structural quality, measurement
examples

application resource imbalances,
91–92

bypassing the architecture,
88–90

failure to set processing limits, 90
lack of defensive mechanisms,

93–94
security weaknesses, 92–93

Structural quality, measuring
layered approach, 77. See also specific

attributes.
maintainability, 81–82
measurable software attributes, 77
overview, 77
performance efficiency, 79–80
reliability, 78–79
security, 80–81
size, 83
summary of measurable attributes,

83–85
system requirements for, 95

Subroutine testing
definition, 294
distribution in U.S. software

projects, 325
DRE (defect removal efficiency),

290–291
overview, 294–295

Supply chain testing, 311
Support. See Maintenance and support.
Sutherland, Ken, 222

Staffing, economic value of software
quality, 484–486, 516–517

Standardizing
requirements outlines, 56–58
taxonomies, 213–216

Standards. See also specific standards.
vs. best practices, 174
defect prevention, 171–174
organizations, 171–174
software defect potentials, 172–174
test plan contents, 321

Standards quality
definition, 11
importance ranking, 15

Stand-ups, 223
Static analysis

in conjunction with inspections,
257–258

defect prevention, 185–188
DRE (defect removal efficiency), 186
languages supported by, 186–187
overview, 185–188
rules libraries, 187
severity levels, post-release

defects, 352
tools for, 185–188

Static analysis, pretest defect removal
effort and costs, 201
per 1,000 function points, 198
per 10,000 function points, 205

Static analysis of source code,
automating

availability, 268
current usage, 271–272
functional quality, 268
future additions, 276
languages supported, 272–275
latency, 268
Lint tool, 267–268
maintainability, 270
nonfunctional quality, 268
performance efficiency, 269–270
reliability, 269
security, 270
size, 270–271
software product quality, 268
structural characteristics, 269–271
structural quality, 268–269
tools, issues with, 272

Index584

TDD (test-driven development), 322
test coverage, 321–322

Test coverage
defect prevention, 120
economic value of software quality,

498–500
IBM studies of, 321
test cases, 321–322

Test defect removal, 37
Test planning. See also Test cases.

IEEE guidelines, 321
overview, 320–321
personnel requirements, estimating,

335–337
Test plans

defect prevention, 130
software defect potentials, 42
standard for contents, 321

Test stages
economic value of software quality,

494–496
performance by occupation

group, 343
Test-driven development (TDD), 322
Testing

Agile, 317
Alpha, 318
automated, 293–294
black box, 291–293
capacity, 303
case study, 316
clean room, 311–312
cloud, 313
cost and effort, estimating, 337–342
cumulative DRE (defect removal

efficiency), 291
defect prevention, 121
definition, 287–288
by developers vs. professional testers,

342–344
effects on IBM schedules, 484
efficiency of, 75
execution, definition, 288
field Beta, 318–319
functional, 290–291, 293
Gamma, 318
independent, 314–315
integration, 300, 325
invalid defects, 282

SwA (Software Assurance), 306
Synergistic defect prevention, 125–127
Syntactic complexity, 154
System test

definition, 285
distribution in U.S. software

projects, 325
DRE (defect removal efficiency), 291
lab testing, 301–302
overview, 301–302

Systems software, testing stages,
328–329

Tagging and releasing defects, 264
Takeuichi, Hirotaka, 222
Tangible value of applications,

535–536
Taxonomies

patterns of, 216–217
standardizing, 213–216

TCO (total cost of ownership)
economic value of software quality,

520–529
requirements gathering, 219

TDD (test-driven development), 322
Team Software Process (TSP),

antagonisms, 127, 136
Technical debt, 465–470
Technical manuals. See User

documentation.
Technical quality

definition, 11
importance ranking, 11–12

Technical software, defect
prevention, 126

Technology investment, effects on
economic value of software
quality, 479

Test cases. See also Use cases.
automatic definition, 48
defect prevention, 130
design methods, 321–323
economic value of software quality,

497–498
errors in, 323–324
estimating volume, 332–335
limitations of combinatorial

complexity, 335
software defect potentials, 42

Index 585

Testing, regression
distribution in U.S. software

projects, 325
DRE (defect removal efficiency), 291

Testing, specialized
cost and effort, estimating, 339
estimating test case volume,

333–334
forms of, 303–316. See also specific

forms.
frequency of use, 289–290
overview, 284–285
personnel requirements, estimating,

336–337
Testing, subroutine

definition, 294
distribution in U.S. software

projects, 325
DRE (defect removal efficiency),

290–291
overview, 294–295

Testing, system test
definition, 285
distribution in U.S. software

projects, 325
DRE (defect removal

efficiency), 291
lab testing, 301–302
overview, 301–302

Testing, unit test
distribution in U.S. software

projects, 325
DRE (defect removal efficiency),

290–291
overview, 296–297
PSP/TSP unit test, 295–296
XP (extreme programming) unit

test, 296
Testing, user

cost and effort, estimating,
339–340

estimating test case
volume, 334

forms of, 316–321. See also specific
forms.

frequency of use, 290
overview, 285
personnel requirements, estimating,

336–337

lab, 319–320
late start, early ending, 248
litigation, 312
localization, 315
manual, 293–294
nationalization, 315
new function, 297–298, 325
nonfunctional, 293
penetration testing, 308–309
as a percent of development,

496–497
performance, 304
platform, 310
predetermined criteria, 289
pretest defect removal, 37, 76
quantitative data, 279–282
regression, 299
reliability of, 44
security, 309
severity levels, 281–282
SOA (Service Oriented Architecture),

313–314
software, definition, 288
vs. software quality, 10
vs. SQA (software quality

assurance), 243
stress, 303
supply chain, 311
test defect removal, 37, 76
unit test, 285
usability, 317–318
viral protection, 304–308
white box, 291–293

Testing, automatic
cost and effort, estimating, 338–339
estimating test case volume, 333
frequency of use, 289
overview, 284
personnel requirements,

estimating, 336
Testing, general

cost and effort, estimating, 338
estimating test case volume, 333
forms of, 294–302. See also specific

forms.
frequency of use, 289
overview, 283–284
personnel requirements,

estimating, 336

Index586

Toxic requirements, 45
Tracking defects, 156–158
Traditional software risks,

179–180
Training

economic value of software, 457
effects on economic value of software

quality, 477–478
maintainability of software, 359
requirements, 47, 219
software skills, 451–452

TSP (Team Software Process),
antagonisms, 127, 136

Unbundling IBM software
applications, 434

Unit test
Agile methods, 285
distribution in U.S. software

projects, 325
DRE (defect removal efficiency),

290–291
overview, 296–297
PSP/TSP unit test, 295–296
XP (extreme programming) unit

test, 296
United States vs. Japan

DRE (defect removal efficiency),
228–229

Kaizen, 227–231
poka yoke, 224–226
pretest defect removal, 227–231
quality circles, 230
social interaction among

workers, 231
software defect potentials,

228–229
Usability testing, 317–318. See also User

testing.
Usage quality

definition, 11
importance ranking, 14

Use cases. See also Test cases.
minimizing requirements defects,

59–60
requirements, software defect

potentials, 47
requirements gathering, 219

Useful life of applications, 529–535

Testing stages. See also specific stages.
distribution in U.S. software projects,

324–325
DRE (defect removal efficiency), 341
frequency of use, 289–290
most common, 325
noted in litigation, 331–332
overview, 283–287

Testing stages, pattern variation by
commercial software, 327–328
computer gaming, 327
end-user software, 325–326
industry, 325–329
IT (Information Technology), 326
military and defense software, 329
MIS (management information

system), 326
open source software

development, 327
outsource vendors, 327
size of application, 329–331
smart-phone applets, 326
systems software, 328–329
type of software, 325–329
web applications, 326

Text checking documents, automated,
211–219

Theft of vital records, 452
Therac-25 radiation therapy device,

litigation, 412–413
Thousand lines of code (KLOC),

465–470
Time-box prototyping, 61
Tools

commercial project estimation, 436
effects on economic value of software

quality, 481–484
measuring defects, 157–158
requirements generation and analysis.

See Requirements generation and
analysis tool.

static analysis, 185–188, 272
tracking defects, 157–158

Topologic complexity, 154
Total cost of ownership (TCO). See TCO

(total cost of ownership).
Total defect removal, economic

value of software quality,
505–507

Index 587

Viral protection testing, 304–308
Voice of the customer, 62

Waterfall development, 246
Watson, Thomas J., 390
Weaknesses, static analysis, 271
Web applications, testing

stages, 326
Website defects

litigation, 411–412
preventing, 131–132
software defect potentials, 43

Weinberg, Gerald, 231, 253
White box testing, 291–293
Wiegers, Karl, 253
Work value of applications, 219

XP (extreme programming) unit
test, 296

Y2K problem, 45

Zero-defect products, cost-per-defect
metric, 114–115

User documentation
defect prevention, 131
IBM studies of user opinions, 266–267
software defect potentials, 42

User stories, minimizing requirements
defects, 60. See also Use cases.

User testing. See also Usability testing.
cost and effort, estimating, 339–340
estimating test case volume, 334
forms of, 316–321. See also specific

forms.
frequency of use, 290
overview, 285
personnel requirements, estimating,

336–337

Value factors, measuring economic value
of software, 437–441

Value of software quality. See Costs, of
software quality; Economic value of
software quality.

Verizon
billing algorithm litigation, 410
defect reporting, example, 416–417

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Authors
	Chapter 1: Defining Software Quality and Economic Value
	Introduction
	Why Is Software Quality Important?

	Defining Software Quality
	Defining Economic Value and Defining the Value of Software Quality
	The Economic Value of Software and Quality to Enterprises that Build Internal Software for Their Own Use
	The Economic Value of Software and Quality to Internal Software Users
	The Economic Value of Software and Quality to Commercial Software Vendors
	The Economic Value of Software and Quality to COTS Users and Customers
	The Economic Value of Software and Quality to Embedded Software Companies
	The Economic Value of Software and Quality to Embedded Equipment Users
	The Economic Value of Software and Software Quality to Other Business Sectors
	Multiple Roles Occurring Simultaneously

	Summary and Conclusions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

